一种自愈合聚合物修饰的碱金属负极及其制备方法与应用

    公开(公告)号:CN109037594B

    公开(公告)日:2021-09-21

    申请号:CN201810703161.5

    申请日:2018-06-30

    Abstract: 本发明公开了一种自愈合聚合物修饰的碱金属负极及其制备方法与应用。本发明首先将具有自愈合功能的聚合物溶解在有机溶剂中,然后将其均匀地涂覆在碱金属表面,聚合物可与金属表面的碱金属离子形成螯合物并作为强健的固态电解质(SEI)膜覆盖在碱金属的表面。本发明在碱金属表面形成的SEI膜十分均匀,不仅显著的降低了界面间的副反应,还可以自发的修复碱金属充放电循环过程中由于体积膨胀/收缩引起的机械损伤及裂痕,从而有效的抑制了枝晶生长并缓解了碱金属的体积变化,保障了稳定且高效的长期循环性能。本发明制备方法简单,适应于规模化生产,与高容量正极材料相匹配,能达到新型高能量密度动力电池的使用要求,具有广阔的应用前景。

    一种氟基离子液体表面修饰锂离子电池三元正极材料的方法

    公开(公告)号:CN110137470A

    公开(公告)日:2019-08-16

    申请号:CN201910407905.3

    申请日:2019-05-15

    Abstract: 本发明公开了一种氟基离子液体表面修饰锂离子电池三元正极材料的方法,包括以下步骤:(1)将三元正极材料加入到氟基离子液体中,所述氟基离子液体包括烷基咪唑四氟硼酸盐、1-乙酸乙酯基-3-甲基咪唑四氟硼酸盐等;(2)搅拌,过滤,洗涤,干燥,煅烧。氟基离子液体通过水解作用能够与三元正极材料表面的锂残渣相互作用并在其表面形成氟化锂包覆层,该包覆层不仅能够有效降低界面间的副反应,而且能够解决三元正极材料对空气中二氧化碳/水敏感问题,使材料的循环寿命和倍率性能得到大幅度改善。本发明制备方法简单,绿色环保,能够显著改善材料的电化学性能,具有广阔的应用前景。

    一种金属锂二次电池电解液及其制备方法与应用

    公开(公告)号:CN110176622B

    公开(公告)日:2022-05-24

    申请号:CN201910407902.X

    申请日:2019-05-15

    Abstract: 本发明公开了一种金属锂二次电池电解液及其制备方法和应用,所述电解液包括锂盐、有机溶剂和添加剂,锂盐溶解在有机溶剂中,所述添加剂包括磺酰氯SO2Cl2等,所述锂盐在金属锂二次电池的电解液中的浓度为0.01~10 mol/L,所述添加剂在电解液中的质量百分含量为0.01%~5%。本发明的电解液可以在金属锂电极表面形成一层稳定的含有无机盐固态电解质层,可以在往复沉积过程中抑制枝晶生长,极大地增加了金属锂二次电池的安全性。采用本发明提供的电解液,无需额外添加机械阻隔层或三维结构电极,技术简单,并与现行工业生产技术接近,易于大规模生产,适用于金属锂二次电池。

    一种锂金属电池锂负极的表面修饰改性方法及锂金属电池

    公开(公告)号:CN108448058B

    公开(公告)日:2021-12-17

    申请号:CN201810104762.4

    申请日:2018-01-31

    Abstract: 本发明公开了一种锂金属电池锂负极的表面修饰改性方法及锂金属电池。该改性方法包括如下步骤:在干燥的保护气体气氛中,将金属锂负极浸渍在含氟离子液体中,或者将含氟离子液体涂抹在金属锂负极的表面,经氟化作用后,取出,在金属锂负极的表面形成一层富含氟化锂的保护层,得到氟化锂包覆的金属锂负极。本发明经过表面氟化作用得到的氟化锂保护层十分均匀且密集,能够减少金属锂与电解液的消耗,抑制锂枝晶的形成,使金属锂负极具有放电比容量更高、循环寿命更长和安全性能更佳等优点,实现了锂金属电池在长循环过程中的稳定与高效,能够达到高能量高功率动力电池的使用要求,有利于推进锂金属电池的产业化进程,具有广阔的应用前景。

    一种硫化锡/石墨烯钠离子电池复合负极材料及其制备方法

    公开(公告)号:CN106654192B

    公开(公告)日:2020-02-18

    申请号:CN201610972942.5

    申请日:2016-11-04

    Abstract: 本发明公开了一种硫化锡/石墨烯钠离子电池复合负极材料及其制备方法。该制备方法为:将硫化锡溶于硫化铵溶液中,加入氧化石墨烯溶液,超声使其分散均匀,通过急速冷冻构建三维多孔结构以及冷冻干燥6‑72h得到硫化锡与石墨烯复合材料前驱体,前驱体在惰性或还原气氛下250~500℃煅烧1~24h,得到硫化锡/石墨烯钠离子电池复合负极材料。本发明的复合材料可用于钠离子电池负极材料,在电流密度为1Ag‑1下的比容量可达649.5mAh g‑1,且在300次循环后比容量保持率大于90%。与传统的水热法等相比,本发明具有流程短、过程简单、能耗较低、材料制备可控程度高,易于实现大规模生产,且电化学性能更为优异等优点。

    一种自愈合聚合物修饰的碱金属负极及其制备方法与应用

    公开(公告)号:CN109037594A

    公开(公告)日:2018-12-18

    申请号:CN201810703161.5

    申请日:2018-06-30

    Abstract: 本发明公开了一种自愈合聚合物修饰的碱金属负极及其制备方法与应用。本发明首先将具有自愈合功能的聚合物溶解在有机溶剂中,然后将其均匀地涂覆在碱金属表面,聚合物可与金属表面的碱金属离子形成螯合物并作为强健的固态电解质(SEI)膜覆盖在碱金属的表面。本发明在碱金属表面形成的SEI膜十分均匀,不仅显著的降低了界面间的副反应,还可以自发的修复碱金属充放电循环过程中由于体积膨胀/收缩引起的机械损伤及裂痕,从而有效的抑制了枝晶生长并缓解了碱金属的体积变化,保障了稳定且高效的长期循环性能。本发明制备方法简单,适应于规模化生产,与高容量正极材料相匹配,能达到新型高能量密度动力电池的使用要求,具有广阔的应用前景。

    一种锂金属电池锂负极的表面修饰改性方法及锂金属电池

    公开(公告)号:CN108448058A

    公开(公告)日:2018-08-24

    申请号:CN201810104762.4

    申请日:2018-01-31

    Abstract: 本发明公开了一种锂金属电池锂负极的表面修饰改性方法及锂金属电池。该改性方法包括如下步骤:在干燥的保护气体气氛中,将金属锂负极浸渍在含氟离子液体中,或者将含氟离子液体涂抹在金属锂负极的表面,经氟化作用后,取出,在金属锂负极的表面形成一层富含氟化锂的保护层,得到氟化锂包覆的金属锂负极。本发明经过表面氟化作用得到的氟化锂保护层十分均匀且密集,能够减少金属锂与电解液的消耗,抑制锂枝晶的形成,使金属锂负极具有放电比容量更高、循环寿命更长和安全性能更佳等优点,实现了锂金属电池在长循环过程中的稳定与高效,能够达到高能量高功率动力电池的使用要求,有利于推进锂金属电池的产业化进程,具有广阔的应用前景。

    一种硫化锡/石墨烯钠离子电池复合负极材料及其制备方法

    公开(公告)号:CN106654192A

    公开(公告)日:2017-05-10

    申请号:CN201610972942.5

    申请日:2016-11-04

    Abstract: 本发明公开了一种硫化锡/石墨烯钠离子电池复合负极材料及其制备方法。该制备方法为:将硫化锡溶于硫化铵溶液中,加入氧化石墨烯溶液,超声使其分散均匀,通过急速冷冻构建三维多孔结构以及冷冻干燥6‑72h得到硫化锡与石墨烯复合材料前驱体,前驱体在惰性或还原气氛下250~500℃煅烧1~24h,得到硫化锡/石墨烯钠离子电池复合负极材料。本发明的复合材料可用于钠离子电池负极材料,在电流密度为1Ag‑1下的比容量可达649.5mAh g‑1,且在300次循环后比容量保持率大于90%。与传统的水热法等相比,本发明具有流程短、过程简单、能耗较低、材料制备可控程度高,易于实现大规模生产,且电化学性能更为优异等优点。

    一种磷酸锂包覆锂离子电池三元正极材料的制备方法

    公开(公告)号:CN110190254A

    公开(公告)日:2019-08-30

    申请号:CN201910407903.4

    申请日:2019-05-15

    Abstract: 本发明公开了一种磷酸锂包覆锂离子电池三元正极材料的制备方法,所述方法包括如下步骤:(1)将磷酸源溶解于有机溶剂中形成溶液,所述溶液中磷酸源的质量分数为0.05~0.8%;(2)向步骤(1)中的溶液中加入锂离子电池三元正极材料,搅拌5~120分钟使其分散均匀后,干燥至所述有机溶剂蒸发完全,得磷酸锂包覆的锂离子电池三元正极材料。利用磷酸可去除三元正极材料表面的锂残渣(氧化锂、氢氧化锂),同时在表面包覆一层分布均匀、结构紧密的磷酸锂,有效减缓三元正极材料在空气中吸水吸氧的现象,提高材料在电解液中的稳定性,使材料的储存性能和循环性能得到明显改善。本发明方法简单,成本低廉,具有较大产业化潜质。

    一种金属锂二次电池电解液及其制备方法与应用

    公开(公告)号:CN110176622A

    公开(公告)日:2019-08-27

    申请号:CN201910407902.X

    申请日:2019-05-15

    Abstract: 本发明公开了一种金属锂二次电池电解液及其制备方法和应用,所述电解液包括锂盐、有机溶剂和添加剂,锂盐溶解在有机溶剂中,所述添加剂包括磺酰氯SO2Cl2等,所述锂盐在金属锂二次电池的电解液中的浓度为0.01~10 mol/L,所述添加剂在电解液中的质量百分含量为0.01%~5%。本发明的电解液可以在金属锂电极表面形成一层稳定的含有无机盐固态电解质层,可以在往复沉积过程中抑制枝晶生长,极大地增加了金属锂二次电池的安全性。采用本发明提供的电解液,无需额外添加机械阻隔层或三维结构电极,技术简单,并与现行工业生产技术接近,易于大规模生产,适用于金属锂二次电池。

Patent Agency Ranking