一种基于马尔可夫过程特征统计的故障检测方法

    公开(公告)号:CN117332232A

    公开(公告)日:2024-01-02

    申请号:CN202311270885.2

    申请日:2023-09-28

    摘要: 本发明涉及一种基于马尔可夫过程特征统计的故障检测方法,分别针对目标机器上与故障相关的各个目标属性,以目标属性的误差作为故障特征,首先执行获得相对应的数据估算模型,以及基于实时分析下的置信区间,对跳出置信区间事件发生的概率进行累计,获得满足预设误报概率上限值的连续异常报警次数,如此在对目标机器的实际检测过程中,以各目标属性的故障特征为对象,执行实时所更新置信区间下的异常分析,并结合连续累计的统计方式,以存在达到对应连续异常报警次数的目标属性的情形,判定目标机器存在故障;技术方案综合考虑目标属性期望、实时置信区间,并引入事件累计发生下的概率统计、以及异常误判分析,提高目标机器故障实际检测准确性与工作效率。