一种利用视频序列帧间相关性的深度图像计算方法

    公开(公告)号:CN106952304A

    公开(公告)日:2017-07-14

    申请号:CN201710172103.X

    申请日:2017-03-22

    Applicant: 南京大学

    Abstract: 本发明公开一种利用视频序列帧间相关性的深度图像计算方法,包括:步骤1、对左右视点相机拍摄的图片进行校正;步骤2、对于第一帧的左右图片的点p,在最大视差搜索范围计算匹配代价,进行视差优化、视差细化,得到初始视差值d1;第一帧的视差梯度为g1;步骤3、对于下一帧的p点的计算,当p点不是异常点或边缘点,以上一帧p点的视差值为基准设定视差搜索范围,否则以最大视差搜索范围计算匹配代价,进行视差优化、视差细化,并得到当前帧的视差值及视差梯度,实现实时的立体匹配。本发明利用视频序列中上一帧的视差,大幅缩小了当前帧算法的计算量,能够在保证原有算法匹配精度的条件下,减小耗时,提高在实际应用场景中的效率。

    一种利用视频序列帧间相关性的深度图像计算方法

    公开(公告)号:CN106952304B

    公开(公告)日:2019-09-20

    申请号:CN201710172103.X

    申请日:2017-03-22

    Applicant: 南京大学

    Abstract: 本发明公开一种利用视频序列帧间相关性的深度图像计算方法,包括:步骤1、对左右视点相机拍摄的图片进行校正;步骤2、对于第一帧的左右图片的点p,在最大视差搜索范围计算匹配代价,进行视差优化、视差细化,得到初始视差值d1;第一帧的视差梯度为g1;步骤3、对于下一帧的p点的计算,当p点不是异常点或边缘点,以上一帧p点的视差值为基准设定视差搜索范围,否则以最大视差搜索范围计算匹配代价,进行视差优化、视差细化,并得到当前帧的视差值及视差梯度,实现实时的立体匹配。本发明利用视频序列中上一帧的视差,大幅缩小了当前帧算法的计算量,能够在保证原有算法匹配精度的条件下,减小耗时,提高在实际应用场景中的效率。

    一种基于大小双基线的三目相机深度图像处理方法

    公开(公告)号:CN110148168B

    公开(公告)日:2023-03-24

    申请号:CN201910432950.4

    申请日:2019-05-23

    Applicant: 南京大学

    Abstract: 本发明公开了基于大小双基线的三目相机深度图像处理方法,通过引入小基线相机组减少计算量,提高计算速度,同时通过大基线相机组进行小范围的立体匹配提高视差图精度,从而达到在提高精度的同时减少立体匹配的计算量的目的。本发明对于现有的双目相机系统,额外添加一个小基线相机,在相同的算法下,通过先计算小基线相机组的视差图,以其为基准扩展一个视差搜索窗口用于大基线相机组的立体匹配,这样不仅可以提高精度同时还减小了计算量,加快了计算速度,提高了整个系统在实际应用场景中的精度与效率,而且还降低了计算量。因此本发明的整个过程能大幅减少立体匹配的计算时间,同时还提高了算法的精度,在实时平台上具有极大应用前景。

    一种基于大小双基线的三目相机深度图像处理方法

    公开(公告)号:CN110148168A

    公开(公告)日:2019-08-20

    申请号:CN201910432950.4

    申请日:2019-05-23

    Applicant: 南京大学

    Abstract: 本发明公开了基于大小双基线的三目相机深度图像处理方法,通过引入小基线相机组减少计算量,提高计算速度,同时通过大基线相机组进行小范围的立体匹配提高视差图精度,从而达到在提高精度的同时减少立体匹配的计算量的目的。本发明对于现有的双目相机系统,额外添加一个小基线相机,在相同的算法下,通过先计算小基线相机组的视差图,以其为基准扩展一个视差搜索窗口用于大基线相机组的立体匹配,这样不仅可以提高精度同时还减小了计算量,加快了计算速度,提高了整个系统在实际应用场景中的精度与效率,而且还降低了计算量。因此本发明的整个过程能大幅减少立体匹配的计算时间,同时还提高了算法的精度,在实时平台上具有极大应用前景。

Patent Agency Ranking