一种基于双层条件随机场的人体行为识别方法

    公开(公告)号:CN107341471B

    公开(公告)日:2019-10-01

    申请号:CN201710537393.3

    申请日:2017-07-04

    Abstract: 本发明公开了一种基于双层条件随机场的人体行为识别方法,属于计算机视觉的行为识别领域。首先,分别提取RGB‑D视频中行为动作主体的人体姿态和可能与其相互交互的物体信息特征,计算交互物体在RGB‑D视频分割后得到的各个小视频得分信息作为全局特征。然后,建模顶层条件随机场以捕捉人体行为间的高阶相关性,建模底层条件随机场以丰富人体行为内部的潜在结构,最终构建双层条件随机场的判别分类模型。接着,采用精确推理和结构化支持向量机分类器学习双层条件随机场的判别分类模型参数。最后,根据学习得到的模型参数和即得模型预测测试视频中人体行为类别。本发明在一定程度上提高了人体行为动作的识别准确度。

    一种基于条件随机场和二次字典学习的图像场景标注方法

    公开(公告)号:CN105844292A

    公开(公告)日:2016-08-10

    申请号:CN201610158608.6

    申请日:2016-03-18

    CPC classification number: G06K9/6249 G06K9/6269

    Abstract: 本发明公开了一种基于条件随机场和二次字典学习的图像场景标注方法,针对训练集图像进行超像素区域过分割,获取每幅图像的超像素过分割区域;提取各个超像素过分割区域的特征,并结合基准标注图像构建超像素标签池,利用超像素标签池训练出支持向量机分类器,计算超像素一元势能;计算相邻超像素成对项势能;借助训练集中全局性的过分割超像素区域的类别统计,以构建应用于类别统计直方图的分类器作为分类成本,基于每一类超像素区域内关键点特征的稀疏表示的稀疏编码子之和的直方图统计作为该CRF模型的高阶势能,分别以类字典、共享字典两种判别字典经过二次稀疏表示优化稀疏编码子,更新字典和CRF参数与分类器参数;本发明提高了标注精度。

    一种基于深度递归分层条件随机场的人体行为识别方法

    公开(公告)号:CN105740815B

    公开(公告)日:2018-12-18

    申请号:CN201610064349.0

    申请日:2016-01-29

    Abstract: 本发明公开了一种基于深度递归分层条件随机场的人体行为识别方法,首先,分别提取由RGB‑D摄像机拍摄行为动作场景的RGB‑D视频中行为动作主体的人体姿态和可能与其相互交互的物体信息,将这两种信息作为深度递归分层条件随机场的中间层状态,建模预测输出目标状态层中当前状态和当前所有已发生的预测输出状态集合的相关性,构建深度递归分层条件随机场模型;其次,采用BCFW优化方法驱动的结构化支持向量机分类器学习关于人体行为序列的判别分类模型;最后,根据学习得到的模型参数和即得判别模型预测待测试的人体行为序列的类别。本发明对行为动作具有显著的鲁棒性,在一定程度上提高了人体行为动作的识别准确度。

    一种基于条件随机场和二次字典学习的图像场景标注方法

    公开(公告)号:CN105844292B

    公开(公告)日:2018-11-30

    申请号:CN201610158608.6

    申请日:2016-03-18

    Abstract: 本发明公开了一种基于条件随机场和二次字典学习的图像场景标注方法,针对训练集图像进行超像素区域过分割,获取每幅图像的超像素过分割区域;提取各个超像素过分割区域的特征,并结合基准标注图像构建超像素标签池,利用超像素标签池训练出支持向量机分类器,计算超像素一元势能;计算相邻超像素成对项势能;借助训练集中全局性的过分割超像素区域的类别统计,以构建应用于类别统计直方图的分类器作为分类成本,基于每一类超像素区域内关键点特征的稀疏表示的稀疏编码子之和的直方图统计作为该CRF模型的高阶势能,分别以类字典、共享字典两种判别字典经过二次稀疏表示优化稀疏编码子,更新字典和CRF参数与分类器参数;本发明提高了标注精度。

    一种基于双层条件随机场的人体行为识别方法

    公开(公告)号:CN107341471A

    公开(公告)日:2017-11-10

    申请号:CN201710537393.3

    申请日:2017-07-04

    Abstract: 本发明公开了一种基于双层条件随机场的人体行为识别方法,属于计算机视觉的行为识别领域。首先,分别提取RGB-D视频中行为动作主体的人体姿态和可能与其相互交互的物体信息特征,计算交互物体在RGB-D视频分割后得到的各个小视频得分信息作为全局特征。然后,建模顶层条件随机场以捕捉人体行为间的高阶相关性,建模底层条件随机场以丰富人体行为内部的潜在结构,最终构建双层条件随机场的判别分类模型。接着,采用精确推理和结构化支持向量机分类器学习双层条件随机场的判别分类模型参数。最后,根据学习得到的模型参数和即得模型预测测试视频中人体行为类别。本发明在一定程度上提高了人体行为动作的识别准确度。

    一种基于深度递归分层条件随机场的人体行为识别方法

    公开(公告)号:CN105740815A

    公开(公告)日:2016-07-06

    申请号:CN201610064349.0

    申请日:2016-01-29

    CPC classification number: G06K9/00335 G06K9/6217

    Abstract: 本发明公开了一种基于深度递归分层条件随机场的人体行为识别方法,首先,分别提取由RGB?D摄像机拍摄行为动作场景的RGB?D视频中行为动作主体的人体姿态和可能与其相互交互的物体信息,将这两种信息作为深度递归分层条件随机场的中间层状态,建模预测输出目标状态层中当前状态和当前所有已发生的预测输出状态集合的相关性,构建深度递归分层条件随机场模型;其次,采用BCFW优化方法驱动的结构化支持向量机分类器学习关于人体行为序列的判别分类模型;最后,根据学习得到的模型参数和即得判别模型预测待测试的人体行为序列的类别。本发明对行为动作具有显著的鲁棒性,在一定程度上提高了人体行为动作的识别准确度。

Patent Agency Ranking