一种NSCLC淋巴结转移风险的智能预测方法及系统

    公开(公告)号:CN114743672A

    公开(公告)日:2022-07-12

    申请号:CN202210270490.1

    申请日:2022-03-18

    摘要: 本发明公开了一种NSCLC淋巴结转移风险的智能预测方法及系统;通过获取肺癌患者的H&E染色全视野数字切片以及患者的临床资料;对图像数据进行质控、色块处理、筛选;将预处理后的色块用于两阶段分析流程:包括建立识别非癌组织的CNN模型和预测早期非小细胞肺癌淋巴结转移的CNN模型。两部分分析均包括:将色块图像分为训练集和验证集,并通过CNN算法构建模型,对训练的CNN模型参数进行优化,对优化后的CNN模型在验证集中进行验证。最终利用经过检测的CNN模型对早期非小细胞肺癌淋巴结转移风险进行预测。本发明采用深度学习算法评判病理切片,使得肿瘤转移风险评估的准确性得以提高,大大降低医疗成本,易于广泛推广。