-
公开(公告)号:CN112306731B
公开(公告)日:2021-11-09
申请号:CN202011265113.6
申请日:2020-11-12
申请人: 南通大学
IPC分类号: G06F11/07 , G06F40/279 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本发明提供了基于Spacy词向量的两阶段判别缺陷报告严重程度预测方法,首先从项目所在的缺陷跟踪系统中搜集历史缺陷报告,并抽取描述信息summary属性和严重程度severity属性对应内容得到缺陷报告训练数据集,然后进行预处理及生成对应向量,最后执行两阶段判别过程构建严重程度预测模型。本发明的有益效果为:本发明在两阶段判别过程采用朴素贝叶斯算法,该算法易实现、效果好,可保证预测模型的准确率;该发明的严重程度预测模型对相同的数据进行两次运用,一方面实现对同一批数据的二次利用,有利于提升模型的表现;另一方面实现两阶段判别可在大类分类正确的情况下减轻多分类朴素贝叶斯预测模型的压力,进一步提高预测模型的准确率。
-
公开(公告)号:CN112306731A
公开(公告)日:2021-02-02
申请号:CN202011265113.6
申请日:2020-11-12
申请人: 南通大学
IPC分类号: G06F11/07 , G06F40/279 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本发明提供了基于Spacy词向量的两阶段判别缺陷报告严重程度预测方法,首先从项目所在的缺陷跟踪系统中搜集历史缺陷报告,并抽取描述信息summary属性和严重程度severity属性对应内容得到缺陷报告训练数据集,然后进行预处理及生成对应向量,最后执行两阶段判别过程构建严重程度预测模型。本发明的有益效果为:本发明在两阶段判别过程采用朴素贝叶斯算法,该算法易实现、效果好,可保证预测模型的准确率;该发明的严重程度预测模型对相同的数据进行两次运用,一方面实现对同一批数据的二次利用,有利于提升模型的表现;另一方面实现两阶段判别可在大类分类正确的情况下减轻多分类朴素贝叶斯预测模型的压力,进一步提高预测模型的准确率。
-