一种基于置信学习的行人重识别方法、装置及存储介质

    公开(公告)号:CN111783568B

    公开(公告)日:2022-07-15

    申请号:CN202010549958.1

    申请日:2020-06-16

    摘要: 本发明提出了一种基于置信学习的行人重识别方法、装置及存储介质,该方法包括:从视频图像资源库的获取N张行人图像,从中随机选取M张行人图像作为查询图像,其余作为查询底库;使用行人重识别模型从中筛选一定数目的行人图像保存在一候选训练集,并该数目的行人图像标记一个新的人员id;将候选训练集与原始训练集合并得到合并训练集,并使用置信训练寻找合并训练集的标签误差后进行校验,然后对行人重识别模型进行重新训练得到重训练后的行人重识别模型后进行线上更新以进行行人重识别。本发明利用置信学习及现有行人重识别系统清洗监控系统下的海量视频数据,从而提供更多的可用训练数据,有效地提高了行人重识别系统的泛化性能及准确率。

    一种基于置信学习的行人重识别方法、装置及存储介质

    公开(公告)号:CN111783568A

    公开(公告)日:2020-10-16

    申请号:CN202010549958.1

    申请日:2020-06-16

    IPC分类号: G06K9/00 G06K9/62

    摘要: 本发明提出了一种基于置信学习的行人重识别方法、装置及存储介质,该方法包括:从视频图像资源库的获取N张行人图像,从中随机选取M张行人图像作为查询图像,其余作为查询底库;使用行人重识别模型从中筛选一定数目的行人图像保存在一候选训练集,并该数目的行人图像标记一个新的人员id;将候选训练集与原始训练集合并得到合并训练集,并使用置信训练寻找合并训练集的标签误差后进行校验,然后对行人重识别模型进行重新训练得到重训练后的行人重识别模型后进行线上更新以进行行人重识别。本发明利用置信学习及现有行人重识别系统清洗监控系统下的海量视频数据,从而提供更多的可用训练数据,有效地提高了行人重识别系统的泛化性能及准确率。