-
公开(公告)号:CN114606501B
公开(公告)日:2023-06-30
申请号:CN202210291042.X
申请日:2022-03-23
申请人: 台州学院 , 台州市生物医化产业研究院有限公司
摘要: 本发明提供了一种氧缺陷钒酸铋/磷化铁复合光电极及其制备方法和应用,属于防腐材料技术领域,包括基底和负载于所述基底表面的氧缺陷钒酸铋/磷化铁复合材料。本发明提供的复合光电极中钒酸铋含有氧缺陷,能够利用氧空位改善钒酸铋电极的导电性,从而提升钒酸铋光生电荷在体相和表面的分离,磷化铁可以促进钒酸铋电极表面的载流子注入效率,大幅提升水氧化活性,氧缺陷和磷化铁之间具有协同作用,有助于提升光生电子的寿命和浓度,进而实现金属的阴极保护。实施例的结果显示,本发明提供的复合光电极的开路电位达到‑545mV,与304不锈钢耦合后自腐蚀电位为‑402mV。
-
公开(公告)号:CN113293382B
公开(公告)日:2023-03-10
申请号:CN202011204756.X
申请日:2020-11-02
申请人: 台州学院 , 台州市生物医化产业研究院有限公司
摘要: 本发明提供了一种BiVO4/MnOOH薄膜电极的制备方法,属于防腐材料技术领域。本发明所得BiVO4/MnOOH薄膜电极能够吸收可见光,有效拓宽了光阳能光谱的吸收范围;MnOOH的负载加速了开路电位下BiVO4电极表面的空穴转移速度,降低了载流子的复合速率,用于光生阴极防腐时,能够大幅增加光生电子向阴极金属材料的注入效率,有效促进阴极金属材料自腐蚀电位的负移,从而增强了阴极金属材料在含氯环境下的抗腐蚀能力。同时,MnOOH的负载避免了BiVO4光电极与溶液的直接接触,避免了BiVO4的化学腐蚀,进而提高了BiVO4/MnOOH薄膜电极的稳定性。
-
公开(公告)号:CN113308702B
公开(公告)日:2022-03-11
申请号:CN202011146135.0
申请日:2020-10-23
申请人: 台州学院 , 台州市生物医化产业研究院有限公司
IPC分类号: C25B3/07 , C25B11/091 , B01J27/043 , B01J35/06 , B01J37/34 , B01J37/10 , D01F9/08 , D06M11/52 , D06M11/83
摘要: 本发明提供了一种用于CO2还原制甲酸的光阴极材料及其制备方法,属于光电极材料技术领域。本发明通过“铁电极化”和“界面水活化”双重改性策略构建BiFeO3/ZnTe/Bi‑S复合光阴极,通过BiFeO3极化电场的电荷驱动力,Bi‑S界面的H2O、CO2吸附活化能力以及光电协同作用,实现ZnTe载流子分离和界面反应效率的最大化,从而有效降低ZnTe反应过电势,提高CO2定向转化为甲酸的选择性。
-
公开(公告)号:CN113293404B
公开(公告)日:2022-02-25
申请号:CN202011144710.3
申请日:2020-10-23
申请人: 台州学院 , 台州市生物医化产业研究院有限公司
IPC分类号: C25B11/087 , C25B11/077 , C25B1/04 , C25B1/55
摘要: 本发明提供了一种异质结光阳极材料及其制备方法和应用,属于光电极材料技术领域。本发明的CuWO4/NiWO4以WO3、无机铜盐和无机镍盐通过煅烧反应一步生成,二者共用WO3作为反应的模板剂,因而CuWO4和NiWO4界面间不存在晶格不匹配问题,进而能够实现光生电荷的高效分离,极大提高光生载流子的分离效率和光电流密度。本发明中,CuWO4为n型半导体,NiWO4为p型半导体,二者能带匹配可形成有效的pn结,促进‑光生电荷在异质结界面间的电荷分离,从而显著提高光电流密度。且构造的CuWO4/NiWO4纳米异质结能够拓宽光吸收范围,进一步增加光吸收效率,对改善CuWO4的光电催化活性作用明显。
-
公开(公告)号:CN113293391B
公开(公告)日:2022-08-09
申请号:CN202011144694.8
申请日:2020-10-23
申请人: 台州学院 , 台州市生物医化产业研究院有限公司
IPC分类号: C25B1/04 , C25B1/55 , C25B11/087 , C25B11/077 , C25B11/02 , D01F9/10 , B82Y30/00 , B82Y40/00
摘要: 本发明涉及光电极材料技术领域,尤其涉及一种钨酸锡纳米纤维光阳极材料的制备方法。本发明提供的制备方法,包括以下步骤:将无机锡源、无机钨源、有机高分子聚合物和有机溶剂混合,得到纺丝液;采用静电纺丝的方式,利用所述纺丝液在FTO导电玻璃表面制备三维纳米纤维;将所述三维纳米纤维进行煅烧,得到所述SnWO4纳米纤维光阳极材料。所述制备方法工艺路线简单,设备装置简便,纺丝成本低廉,可实现SnWO4的批量化生产和大面积SnWO4光电极的可控制备。制备得到的SnWO4光电极在模拟太阳光照射下该电极可产生较为优异的光电流和较低的起始电位,使光电转化水分解效率增加,在未来清洁能源生产领域具有极强的应用前景。
-
公开(公告)号:CN114606501A
公开(公告)日:2022-06-10
申请号:CN202210291042.X
申请日:2022-03-23
申请人: 台州学院 , 台州市生物医化产业研究院有限公司
摘要: 本发明提供了一种氧缺陷钒酸铋/磷化铁复合光电极及其制备方法和应用,属于防腐材料技术领域,包括基底和负载于所述基底表面的氧缺陷钒酸铋/磷化铁复合材料。本发明提供的复合光电极中钒酸铋含有氧缺陷,能够利用氧空位改善钒酸铋电极的导电性,从而提升钒酸铋光生电荷在体相和表面的分离,磷化铁可以促进钒酸铋电极表面的载流子注入效率,大幅提升水氧化活性,氧缺陷和磷化铁之间具有协同作用,有助于提升光生电子的寿命和浓度,进而实现金属的阴极保护。实施例的结果显示,本发明提供的复合光电极的开路电位达到‑545mV,与304不锈钢耦合后自腐蚀电位为‑402mV。
-
公开(公告)号:CN113308702A
公开(公告)日:2021-08-27
申请号:CN202011146135.0
申请日:2020-10-23
申请人: 台州学院 , 台州市生物医化产业研究院有限公司
IPC分类号: C25B3/07 , C25B11/091 , B01J27/043 , B01J35/06 , B01J37/34 , B01J37/10 , D01F9/08 , D06M11/52 , D06M11/83
摘要: 本发明提供了一种用于CO2还原制甲酸的光阴极材料及其制备方法,属于光电极材料技术领域。本发明通过“铁电极化”和“界面水活化”双重改性策略构建BiFeO3/ZnTe/Bi‑S复合光阴极,通过BiFeO3极化电场的电荷驱动力,Bi‑S界面的H2O、CO2吸附活化能力以及光电协同作用,实现ZnTe载流子分离和界面反应效率的最大化,从而有效降低ZnTe反应过电势,提高CO2定向转化为甲酸的选择性。
-
公开(公告)号:CN113293382A
公开(公告)日:2021-08-24
申请号:CN202011204756.X
申请日:2020-11-02
申请人: 台州学院 , 台州市生物医化产业研究院有限公司
摘要: 本发明提供了一种BiVO4/MnOOH薄膜电极的制备方法,属于防腐材料技术领域。本发明所得BiVO4/MnOOH薄膜电极能够吸收可见光,有效拓宽了光阳能光谱的吸收范围;MnOOH的负载加速了开路电位下BiVO4电极表面的空穴转移速度,降低了载流子的复合速率,用于光生阴极防腐时,能够大幅增加光生电子向阴极金属材料的注入效率,有效促进阴极金属材料自腐蚀电位的负移,从而增强了阴极金属材料在含氯环境下的抗腐蚀能力。同时,MnOOH的负载避免了BiVO4光电极与溶液的直接接触,避免了BiVO4的化学腐蚀,进而提高了BiVO4/MnOOH薄膜电极的稳定性。
-
公开(公告)号:CN113293404A
公开(公告)日:2021-08-24
申请号:CN202011144710.3
申请日:2020-10-23
申请人: 台州学院 , 台州市生物医化产业研究院有限公司
IPC分类号: C25B11/087 , C25B11/077 , C25B1/04 , C25B1/55
摘要: 本发明提供了一种异质结光阳极材料及其制备方法和应用,属于光电极材料技术领域。本发明的CuWO4/NiWO4以WO3、无机铜盐和无机镍盐通过煅烧反应一步生成,二者共用WO3作为反应的模板剂,因而CuWO4和NiWO4界面间不存在晶格不匹配问题,进而能够实现光生电荷的高效分离,极大提高光生载流子的分离效率和光电流密度。本发明中,CuWO4为n型半导体,NiWO4为p型半导体,二者能带匹配可形成有效的pn结,促进‑光生电荷在异质结界面间的电荷分离,从而显著提高光电流密度。且构造的CuWO4/NiWO4纳米异质结能够拓宽光吸收范围,进一步增加光吸收效率,对改善CuWO4的光电催化活性作用明显。
-
公开(公告)号:CN113293391A
公开(公告)日:2021-08-24
申请号:CN202011144694.8
申请日:2020-10-23
申请人: 台州学院 , 台州市生物医化产业研究院有限公司
IPC分类号: C25B1/04 , C25B1/55 , C25B11/087 , C25B11/077 , C25B11/02 , D01F9/10 , B82Y30/00 , B82Y40/00
摘要: 本发明涉及光电极材料技术领域,尤其涉及一种钨酸锡纳米纤维光阳极材料的制备方法。本发明提供的制备方法,包括以下步骤:将无机锡源、无机钨源、有机高分子聚合物和有机溶剂混合,得到纺丝液;采用静电纺丝的方式,利用所述纺丝液在FTO导电玻璃表面制备三维纳米纤维;将所述三维纳米纤维进行煅烧,得到所述SnWO4纳米纤维光阳极材料。所述制备方法工艺路线简单,设备装置简便,纺丝成本低廉,可实现SnWO4的批量化生产和大面积SnWO4光电极的可控制备。制备得到的SnWO4光电极在模拟太阳光照射下该电极可产生较为优异的光电流和较低的起始电位,使光电转化水分解效率增加,在未来清洁能源生产领域具有极强的应用前景。
-
-
-
-
-
-
-
-
-