一种自动更新模型的方法、系统、设备及存储介质

    公开(公告)号:CN114662588A

    公开(公告)日:2022-06-24

    申请号:CN202210278104.3

    申请日:2022-03-21

    IPC分类号: G06K9/62 G06N3/08

    摘要: 本发明提供一种自动更新模型的方法、系统、设备及存储介质,属于模型更新技术领域。自动更新模型的方法包括:获得样本数据集;将样本数据集中的若干个样本数据输入神经网络模型训练,生成旧数据集;若样本数据集中未训练的样本数据数量大于或等于样本数量阈值a,选择a个样本数据作为新数据集输入至神经网络模型获得训练结果;根据训练结果对新数据集进行划分,获得可信数据集;将可信数据集与旧数据集按照预设组合规则进行组合,得到复合数据集,并将复合数据集输入至神经网络模型,更新神经网络模型;将复合数据集作为旧数据集,继续训练未训练的样本数据,自动更新网络模型。解决了模型更新步骤繁琐,更新效率底下,易造成概念偏移的问题。

    一种自动更新模型的方法、系统、设备及存储介质

    公开(公告)号:CN114662588B

    公开(公告)日:2023-11-07

    申请号:CN202210278104.3

    申请日:2022-03-21

    IPC分类号: G06N3/08 G06F18/214

    摘要: 本发明提供一种自动更新模型的方法、系统、设备及存储介质,属于模型更新技术领域。自动更新模型的方法包括:获得样本数据集;将样本数据集中的若干个样本数据输入神经网络模型训练,生成旧数据集;若样本数据集中未训练的样本数据数量大于或等于样本数量阈值a,选择a个样本数据作为新数据集输入至神经网络模型获得训练结果;根据训练结果对新数据集进行划分,获得可信数据集;将可信数据集与旧数据集按照预设组合规则进行组合,得到复合数据集,并将复合数据集输入至神经网络模型,更新神经网络模型;将复合数据集作为旧数据集,继续训练未训练的样本数据,自动更新网络模型。解决了模型更新步骤繁琐,更新效率低下,易造成概念偏移的问题。