-
公开(公告)号:CN106744802A
公开(公告)日:2017-05-31
申请号:CN201710008668.4
申请日:2017-01-06
Applicant: 吉林大学
IPC: C01B32/05
Abstract: 本发明的生物基一维微孔‑大孔复合孔道碳材料属于超级电容器技术领域,所述生物基一维微孔‑大孔复合孔道碳材料的微观形貌为管状,述生物基一维微孔‑大孔复合孔道碳材料由无定型碳和石墨化碳组成;所述生物基一维微孔‑大孔复合孔道碳材料的制备方法是,将萝藦进行碳化活化得到一维微孔‑大孔复合孔道结构的碳材料。本发明的生物基一维微孔‑大孔复合孔道碳材料取得了处理过程简单便捷,原料绿色廉价易得,对环境友好,电化学性能好的有益效果。所得生物基一维微孔‑大孔复合孔道碳材料在超级电容器材料方面有巨大的潜力应用。
-
公开(公告)号:CN112233907A
公开(公告)日:2021-01-15
申请号:CN202010912481.9
申请日:2020-09-03
Applicant: 吉林大学
Abstract: 本发明涉及一种CuO/MnO2复合纳米材料及其制备方法,微观形貌呈片状结构,片状结构的厚度是15‑20纳米,空隙是20‑50纳米。超级电容器需要大幅提高能量密度,扩大电极材料的电压窗口和提升电极材料的比电容量是实现该目标的有效途径,纳米氧化铜是一种重要的电极材料,为了提高纳米CuO的电化学性能,将纳米CuO与MnO2复合,并通过调整形貌结构来优化其性能。本发明的复合纳米材料制备得到的电极通过提升材料的比表面积,能够为法拉第反应和化学吸脱附提供更多反应位点,增大电极材料的内部空间,进而提高材料的比电容,相比对应的一元材料在比电容值上都有较明显的提升,具有较好的应用价值。
-
公开(公告)号:CN107592782A
公开(公告)日:2018-01-16
申请号:CN201710789123.1
申请日:2017-09-05
Applicant: 吉林大学
IPC: H05K9/00
Abstract: 一种碳纳米管封装钴和其氧化物(CoO和Co3O4)纳米球吸波材料及制备方法,属于电磁波吸收材料技术领域。吸波材料的微观形貌为碳材料构成的中空菱形十二面体结构,碳纳米管生长在菱形十二面体结构的表面,每根碳纳米管外侧的尽头封装了一个钴及其氧化物纳米球;菱形十二面体结构的尺寸为400~550nm,碳纳米管外径为14~16nm,内径为11~13nm,钴及其氧化物纳米球的直径为11~13nm;吸波材料中无定形碳与石墨化碳的比例为1:0.79~1.17,吸波材料的饱和磁化强度为27.83~39.4emu/g,最大电磁波吸收超过-40dB,有效吸收范围超过4.5GHz;经1M硫酸或1M氨水处理6~20小时后,吸波材料的最大电磁波吸收依然超过-40dB,有效吸收范围超过4.5GHz,在电磁波吸波材料方面有巨大潜力。
-
公开(公告)号:CN112233907B
公开(公告)日:2022-05-24
申请号:CN202010912481.9
申请日:2020-09-03
Applicant: 吉林大学
Abstract: 本发明涉及一种CuO/MnO2复合纳米材料及其制备方法,微观形貌呈片状结构,片状结构的厚度是15‑20纳米,空隙是20‑50纳米。超级电容器需要大幅提高能量密度,扩大电极材料的电压窗口和提升电极材料的比电容量是实现该目标的有效途径,纳米氧化铜是一种重要的电极材料,为了提高纳米CuO的电化学性能,将纳米CuO与MnO2复合,并通过调整形貌结构来优化其性能。本发明的复合纳米材料制备得到的电极通过提升材料的比表面积,能够为法拉第反应和化学吸脱附提供更多反应位点,增大电极材料的内部空间,进而提高材料的比电容,相比对应的一元材料在比电容值上都有较明显的提升,具有较好的应用价值。
-
公开(公告)号:CN112133573A
公开(公告)日:2020-12-25
申请号:CN202010853568.3
申请日:2020-08-24
Applicant: 吉林大学
Abstract: 本发明涉及一种二氧化锰非对称电容器正极复合材料的制备方法,所述正极复合材料为Ti/SnO2‑Sb2O5/CoS‑MnO2,采用复合电沉积方法,通过水热法制备多孔CoS纳米球,与MnO2进行复合电沉积;该方法操作简单,能有效控制晶体结构及孔隙度;所制备的CoS纳米球具有丰富的孔隙结构和较好的延展性,在与MnO2共沉积过程中生成易于电解液离子传输的多孔通道;此外,Co与Mn双金属的相互协同作用,使复合物呈现更高的电容性,晶体结构更加稳定,这些提升了正极活性物质的利用率;利用该Ti/SnO2‑Sb2O5/CoS‑MnO2复合电极材料制得的非对称电容器具备较高的能量密度和较长的循环寿命。
-
公开(公告)号:CN107592782B
公开(公告)日:2019-04-05
申请号:CN201710789123.1
申请日:2017-09-05
Applicant: 吉林大学
IPC: H05K9/00
Abstract: 一种碳纳米管封装钴和其氧化物(CoO和Co3O4)纳米球吸波材料及制备方法,属于电磁波吸收材料技术领域。吸波材料的微观形貌为碳材料构成的中空菱形十二面体结构,碳纳米管生长在菱形十二面体结构的表面,每根碳纳米管外侧的尽头封装了一个钴及其氧化物纳米球;菱形十二面体结构的尺寸为400~550nm,碳纳米管外径为14~16nm,内径为11~13nm,钴及其氧化物纳米球的直径为11~13nm;吸波材料中无定形碳与石墨化碳的比例为1:0.79~1.17,吸波材料的饱和磁化强度为27.83~39.4emu/g,最大电磁波吸收超过‑40dB,有效吸收范围超过4.5GHz;经1M硫酸或1M氨水处理6~20小时后,吸波材料的最大电磁波吸收依然超过‑40dB,有效吸收范围超过4.5GHz,在电磁波吸波材料方面有巨大潜力。
-
公开(公告)号:CN106744802B
公开(公告)日:2019-03-01
申请号:CN201710008668.4
申请日:2017-01-06
Applicant: 吉林大学
IPC: C01B32/05
Abstract: 本发明的生物基一维微孔‑大孔复合孔道碳材料属于超级电容器技术领域,所述生物基一维微孔‑大孔复合孔道碳材料的微观形貌为管状,述生物基一维微孔‑大孔复合孔道碳材料由无定型碳和石墨化碳组成;所述生物基一维微孔‑大孔复合孔道碳材料的制备方法是,将萝藦进行碳化活化得到一维微孔‑大孔复合孔道结构的碳材料。本发明的生物基一维微孔‑大孔复合孔道碳材料取得了处理过程简单便捷,原料绿色廉价易得,对环境友好,电化学性能好的有益效果。所得生物基一维微孔‑大孔复合孔道碳材料在超级电容器材料方面有巨大的潜力应用。
-
-
-
-
-
-