-
公开(公告)号:CN113011392B
公开(公告)日:2023-04-18
申请号:CN202110448106.8
申请日:2021-04-25
Applicant: 吉林大学
IPC: G06V20/56 , G06V10/80 , G06V10/764 , G06N20/00
Abstract: 本发明属于智能汽车环境感知技术领域,具体为一种基于路面图像多纹理特征融合的路面类型识别方法,包括步骤一:通过车载摄像头收集沥青、水泥、雪地、碎石这四种汽车行驶常见路面的图像信息;步骤二:对收集到的图像进行增广处理和灰度化处理;步骤三:使用圆形LBP算子提取路面图像的LBP特征;步骤四:使用小波散射框架提取路面图像的小波纹理特征;步骤五:将这两种路面纹理特征进行融合,形成图像数据集的特征矩阵,并在特征矩阵最后一列打上标签;步骤六:在Matlab中使用有监督的机器学习训练模型对数据进行分类,选取其中准确率最高的分类器作为本方法的分类器模型,其结构合理,有效地提高了当前路面类型识别的精确度。
-
公开(公告)号:CN113011392A
公开(公告)日:2021-06-22
申请号:CN202110448106.8
申请日:2021-04-25
Applicant: 吉林大学
Abstract: 本发明属于智能汽车环境感知技术领域,具体为一种基于路面图像多纹理特征融合的路面类型识别方法,包括步骤一:通过车载摄像头收集沥青、水泥、雪地、碎石这四种汽车行驶常见路面的图像信息;步骤二:对收集到的图像进行增广处理和灰度化处理;步骤三:使用圆形LBP算子提取路面图像的LBP特征;步骤四:使用小波散射框架提取路面图像的小波纹理特征;步骤五:将这两种路面纹理特征进行融合,形成该图像数据集的特征矩阵,并在特征矩阵最后一列打上标签;步骤六:在Matlab中使用有监督的机器学习训练模型对数据进行分类,选取其中准确率最高的分类器作为本方法的分类器模型,其结构合理,有效地提高了当前路面类型识别的精确度。
-