-
公开(公告)号:CN104353507B
公开(公告)日:2016-01-20
申请号:CN201410168674.2
申请日:2014-04-23
Applicant: 吉林大学
Abstract: 一种基于纳米半锥壳阵列实时控制水流方向的技术,属于材料科学领域。本方法涉及到掩模刻蚀方法、物理气相沉积方法,一些组装方面的方法以及表面引发原子转移自由基聚合方法。整个过程操作简便,过程低耗清洁,可控性高。由于半锥壳阵列的倾斜特征,使水流在表面具有单向的流动性,而且随着半锥壳表面亲疏水性质的不同,水流方向可以被反转。通过在表面修饰温度响应的聚异丙基丙烯酰胺,使表面亲疏水性质随着温度的变化而转换,从而可以实现对水流方向的实时控制。这种对水流的实时控制可以在智能微流体器件,集水器件等实际应用中发挥特殊的作用。
-
公开(公告)号:CN103885101A
公开(公告)日:2014-06-25
申请号:CN201410072001.7
申请日:2014-02-28
Applicant: 吉林大学
Abstract: 一种各向异性光增强透射性质薄膜的制备方法,属于薄膜材料技术领域。本发明所述方法涉及到掩模刻蚀技术、物理气相沉积技术以及一些组装方面的技术。整个过程操作简便,过程低耗清洁,可控性高。通过控制刻蚀的时间和条件,可以制备不同高度的半锥壳和不同大小的纳米孔。利用我们的方法制备的非对称半锥壳纳米孔阵列薄膜制备成本低,具有各向异性的光学增强透射的作用,可以改变入射方向来极大的改变透射强度,做成迅速响应的光学开关,也可以运用到新型的各向异性等离子体共振传感器中。
-
公开(公告)号:CN103885101B
公开(公告)日:2015-12-02
申请号:CN201410072001.7
申请日:2014-02-28
Applicant: 吉林大学
Abstract: 一种各向异性光增强透射性质薄膜的制备方法,属于薄膜材料技术领域。本发明所述方法涉及到掩模刻蚀技术、物理气相沉积技术以及一些组装方面的技术。整个过程操作简便,过程低耗清洁,可控性高。通过控制刻蚀的时间和条件,可以制备不同高度的半锥壳和不同大小的纳米孔。利用我们的方法制备的非对称半锥壳纳米孔阵列薄膜制备成本低,具有各向异性的光学增强透射的作用,可以改变入射方向来极大的改变透射强度,做成迅速响应的光学开关,也可以运用到新型的各向异性等离子体共振传感器中。
-
公开(公告)号:CN104198441B
公开(公告)日:2017-01-18
申请号:CN201410456457.3
申请日:2014-09-09
Applicant: 吉林大学
IPC: G01N21/552
Abstract: 一种纳米火山-圆盘复合阵列薄膜结构的限域型表面等离子体共振传感器、制备方法及其在对抗人免疫球蛋白免疫识别方面的应用,属于材料科学领域。本方法涉及到掩模遮蔽技术、物理气相沉积技术以及一些组装和刻蚀方面的技术。整个过程操作简便,过程低耗清洁,可控性高。通过控制刻蚀和金属沉积的条件,可以制备不同尺寸纳米间隙的纳米火山-圆盘复合阵列。圆盘与火山内壁之间的间隙可以在共振激发下具有增强的电场强度,使传感灵敏度得到很大的提升,而且可以将检测过程限制在火山内部,制备成新型的限域传感器,极大的减少了背景噪音,充分利用电场增强和节约了昂贵的检测物质,使传感过程更加高效和低成本。
-
公开(公告)号:CN104353507A
公开(公告)日:2015-02-18
申请号:CN201410168674.2
申请日:2014-04-23
Applicant: 吉林大学
Abstract: 一种基于纳米半锥壳阵列实时控制水流方向的技术,属于材料科学领域。本方法涉及到掩模刻蚀方法、物理气相沉积方法,一些组装方面的方法以及表面引发原子转移自由基聚合方法。整个过程操作简便,过程低耗清洁,可控性高。由于半锥壳阵列的倾斜特征,使水流在表面具有单向的流动性,而且随着半锥壳表面亲疏水性质的不同,水流方向可以被反转。通过在表面修饰温度响应的聚异丙基丙烯酰胺,使表面亲疏水性质随着温度的变化而转换,从而可以实现对水流方向的实时控制。这种对水流的实时控制可以在智能微流体器件,集水器件等实际应用中发挥特殊的作用。
-
公开(公告)号:CN104198441A
公开(公告)日:2014-12-10
申请号:CN201410456457.3
申请日:2014-09-09
Applicant: 吉林大学
IPC: G01N21/552
Abstract: 一种纳米火山-圆盘复合阵列薄膜结构的限域型表面等离子体共振传感器、制备方法及其在对抗人免疫球蛋白免疫识别方面的应用,属于材料科学领域。本方法涉及到掩模遮蔽技术、物理气相沉积技术以及一些组装和刻蚀方面的技术。整个过程操作简便,过程低耗清洁,可控性高。通过控制刻蚀和金属沉积的条件,可以制备不同尺寸纳米间隙的纳米火山-圆盘复合阵列。圆盘与火山内壁之间的间隙可以在共振激发下具有增强的电场强度,使传感灵敏度得到很大的提升,而且可以将检测过程限制在火山内部,制备成新型的限域传感器,极大的减少了背景噪音,充分利用电场增强和节约了昂贵的检测物质,使传感过程更加高效和低成本。
-
-
-
-
-