一种具有盗取攻击应对机制的异质虹膜认证方法

    公开(公告)号:CN110046588B

    公开(公告)日:2019-11-01

    申请号:CN201910321473.4

    申请日:2019-04-22

    Applicant: 吉林大学

    Abstract: 本发明公开了一种具有盗取攻击应对机制的异质虹膜认证方法,其方法为:步骤一、构建基于卷积神经网络而改进的异质虹膜多类别认证系统;步骤二、构建盗取攻击应对机制;步骤三、开始正式认证;步骤四、图像依次进入全连接层;步骤五、得到与单一分类器所属的虹膜的相似概率;步骤六、得到精确的相似概率;步骤七、通过编码层的映射关系,输出测试虹膜所属的虹膜类别情况。有益效果:对传统的卷积神经网络进行改造,增加图像处理层和稀释层,有助于在多类别认证中放大不同类别虹膜间的差异性,提高认证的准确性。

    一种具有盗取攻击应对机制的异质虹膜认证方法

    公开(公告)号:CN110046588A

    公开(公告)日:2019-07-23

    申请号:CN201910321473.4

    申请日:2019-04-22

    Applicant: 吉林大学

    Abstract: 本发明公开了一种具有盗取攻击应对机制的异质虹膜认证方法,其方法为:步骤一、构建基于卷积神经网络而改进的异质虹膜多类别认证系统;步骤二、构建盗取攻击应对机制;步骤三、开始正式认证;步骤四、图像依次进入全连接层;步骤五、得到与单一分类器所属的虹膜的相似概率;步骤六、得到精确的相似概率;步骤七、通过编码层的映射关系,输出测试虹膜所属的虹膜类别情况。有益效果:对传统的卷积神经网络进行改造,增加图像处理层和稀释层,有助于在多类别认证中放大不同类别虹膜间的差异性,提高认证的准确性。

Patent Agency Ranking