一种具有修复损伤能力的离子凝胶聚合物电解质、制备方法及其应用

    公开(公告)号:CN108539264B

    公开(公告)日:2020-04-21

    申请号:CN201810479727.0

    申请日:2018-05-18

    Applicant: 吉林大学

    Abstract: 一种具有修复损伤能力的离子凝胶聚合物电解质、制备方法及其作为电解质在锂离子电池中的应用,属于锂离子电池聚合物电解质技术领域。本发明利用含有能够形成可逆相互作用交联的聚离子液体材料作为骨架,与离子液体、锂盐混合并热压成型,得到离子凝胶电解质。该离子凝胶电解质不仅具有高的电导率、不易燃性和良好的机械性能,同时由于采用可逆相互作用交联,得到的离子凝胶电解质隔膜能够能够在一定温度下,实现对破损的修复,有效的防止锂离子电池因电解质层破损出现短路等事故,提高了锂离子电池的安全性和可靠性,并延长了使用寿命,该离子凝胶电解质有望替代传统有机电解液,作为新一代电解质材料在锂离子电池中广泛应用。

    一种锂离子电池负极材料及其制备方法、锂离子电池电极片和锂离子电池

    公开(公告)号:CN109585841A

    公开(公告)日:2019-04-05

    申请号:CN201811476586.3

    申请日:2018-12-05

    Applicant: 吉林大学

    Abstract: 本发明提供了一种锂离子电池负极材料及其制备方法、锂离子电池电极片和锂离子电池,属于锂离子电池的领域。本发明以农业废弃物玉米秸秆为原料,依次进行烧结和盐酸酸化,得到SiO2前驱体;然后经铝热还原后,再使用盐酸和氢氟酸酸化,得到玉米硅活性材料;将玉米硅活性材料与导电剂、粘结剂混合,得到锂离子电池负极材料。本发明以农业废弃物玉米秸秆为原料,来源丰富,成本低廉,经过简单的步骤即可制备出性能优异的锂离子电池负极材料,不仅使秸秆资源得到有效综合利用,同时可带来巨大的社会效益、经济效益和生态效益。将所得锂离子电池负极材料制备成电极片用于锂离子电池中,所得锂离子电池电学性能优异。

    一种负极材料及其制备方法和钠离子二次电池

    公开(公告)号:CN106025204A

    公开(公告)日:2016-10-12

    申请号:CN201610363034.6

    申请日:2016-05-26

    Applicant: 吉林大学

    CPC classification number: H01M4/366 H01M4/5825 H01M4/625 H01M10/054

    Abstract: 本发明提供一种负极材料及其制备方法和钠离子二次电池。本发明提供的负极材料由包括钠快离子结构的Ca0.5Ti2(PO4)3和碳的材料复合而成,钠快离子结构的Ca0.5Ti2(PO4)3具有更多的空位,在充放电过程中可以嵌入更多的钠离子,得到更高的比容量;碳的复合能够大大加快电子在单个粒子内和多个粒子间的传输,从而得到优异的可逆比容量以及良好的循环性能。本发明提供的负极材料制备的钠离子二次电池在3~0.01V电压区间充放电,首次放电比容量为463.9mAh/g,充电比容量为235.2mAh/g,30次循环后其放电比容量的保持率高达99%。

    钒氧碳超级电容器电极材料的静电纺丝制备方法

    公开(公告)号:CN104389042A

    公开(公告)日:2015-03-04

    申请号:CN201410778369.5

    申请日:2014-12-16

    Applicant: 吉林大学

    CPC classification number: Y02E60/13

    Abstract: 本发明的钒氧碳超级电容器电极材料的静电纺丝制备方法,属于超级电容器的技术领域。以工业纺织的聚丙烯腈纤维和乙酰丙酮氧钒为原料,溶于二甲基甲酰胺后,静电纺丝制得原始纤维;经预氧化、氮气保护下碳化得到含有钒氧碳的柔性碳纤维毡。本发明通过简单的调整钒源的掺杂量,得到性能优良、无需任何粘结剂的柔性超级电容器电极材料;成本低廉,操作简便,且制作电极片时无需添加粘结剂和导电助剂;更为突出的是制备的钒氧碳纤维的电化学性能良好,具有高比容量。

    一种锡基铁碳复合锂电池负极材料、制备方法及应用

    公开(公告)号:CN104143632A

    公开(公告)日:2014-11-12

    申请号:CN201410370477.9

    申请日:2014-07-30

    Applicant: 吉林大学

    CPC classification number: H01M4/364 H01M4/387 H01M4/583 H01M10/0525

    Abstract: 本发明提供一种锡基铁碳复合锂电池负极材料、制备方法及应用,属于锂离子电池材料技术领域。该方法先将四氯化锡、硝酸铁和柠檬酸混合,形成混合溶液,调节混合溶液pH值至中性,在60-80℃下持续搅拌形成溶胶凝胶;然后将溶胶凝胶研磨,在马弗炉内烧结,得到铁锡氧化物前驱体;最后将铁锡氧化物前驱体放入管式炉中,通入乙炔气体反应,得到锡基铁碳复合锂电池负极材料。本发明的锡基铁碳复合锂电池负极材料,以原位生成的铁碳化合物作为缓冲抑制了材料的体积变化与粉化,提高了材料的循环以及倍率性能,结果表明经过1次循环后,容量能达到900mAh/g,经过50次循环仍然可以保持在850mAh/g以上。

    一种纳米片状结构的钠离子电池负极材料NiCo2S4及其制备方法

    公开(公告)号:CN108258238B

    公开(公告)日:2020-06-19

    申请号:CN201810037493.4

    申请日:2018-01-16

    Applicant: 吉林大学

    Abstract: 一种纳米片状结构的钠离子电池负极材料NiCo2S4及其制备方法,属于锂离子电池技术领域。是将硝酸钴、碱式碳酸镍、硫脲一起加入到去离子水中,搅拌10~20min;再向其中加入氨水,溶液变成深黑色,搅拌1~3h;将得到的反应溶液在150~180℃条件下水热反应15~25h;待反应溶液冷却到室温,用水和无水乙醇分别离心洗涤3~5遍;将离心产物在50~80℃条件下烘干12~24h,得到NiCo2S4。本发明通过制备特殊形貌的NiCo2S4,有效抑制了材料在钠离子插入脱出过程中的体积膨胀,缩短了钠离子和电子的传输路径,在一定程度上也提高了材料的电化学性质,大大改善了电池的循环和倍率性能。

    锂离子二次电池正极材料硅酸亚铁锂的双导体修饰改性制备方法

    公开(公告)号:CN107134568A

    公开(公告)日:2017-09-05

    申请号:CN201710323281.8

    申请日:2017-05-10

    Applicant: 吉林大学

    CPC classification number: H01M4/364 H01M4/62

    Abstract: 一种锂离子二次电池正极材料硅酸亚铁锂Li2FeSiO4/C/Cu/Li3PO4的双导体修饰改性制备方法,属于锂离子电池材料领域。首先是将Cu(NO3)2·3H2O和(NH4)2HPO4溶解在去离子水中,加热蒸发溶剂,得到干燥粉末,热处理后得到Cu3(PO4)2;再将TEOS、LiAc·2H2O、Fe(NO3)3·9H2O和Cu3(PO4)2加入到P123的无水乙醇溶液中,搅拌蒸发溶剂后干燥;最后将干燥粉末热处理后得到Li2FeSiO4/C/Cu/Li3PO4。本发明采用简单的溶胶凝胶方法,原位制备出了Li2FeSiO4/C/Cu/Li3PO4复合材料。在得到的材料中,电子导体C和Cu以及离子导体Li3PO4共同修饰Li2FeSiO4,合成过程简单、成本低廉。对材料进行了电化学表征,该电极材料表现出了很好的倍率和循环性能。

    钼钒氧化物作为锂电池负极材料的应用

    公开(公告)号:CN105024068B

    公开(公告)日:2017-07-28

    申请号:CN201510329848.3

    申请日:2015-06-15

    Applicant: 吉林大学

    Abstract: 本发明提供钼钒氧化物作为锂电池负极材料的应用,该钼钒氧化物的分子式为NaVMoO6,空间群C2/m,属于单斜晶系,钒原子与氧原子呈镜面对称,并且占据相同的位置,与周围的氧原子形成(V,Mo)O6八面体,八面体间通过共边构成(VMoO6)∞层,形成二维框架结构,钠离子位于(V,Mo)O6夹层间,该结构晶胞参数为:α=90.0000°、β=111.0400°、γ=90.0000°。由于NaVMoO6具有单相及结晶性好、结构稳定、循环性能好的特点,因此将它作为负极材料,具有极好的循环稳定性和容量保持率。

    一种锂离子二次电池负极材料及其制备方法

    公开(公告)号:CN104538615A

    公开(公告)日:2015-04-22

    申请号:CN201410789047.0

    申请日:2014-12-17

    Applicant: 吉林大学

    Abstract: 一种锂离子二次电池负极材料及其制备方法,属于锂离子电池技术领域。其是将Zn(NO3)2·6H2O和Mn(NO3)2按摩尔比1:2溶于去离子水,搅拌10~20分钟;边搅拌边加入沉淀剂氨水至pH=7.0~7.5;然后在80~95℃下搅拌至粘稠状态,加入与Zn(NO3)2·6H2O的摩尔比为1:1的蔗糖,搅拌均匀,然后在200~280℃条件下直至燃烧结束;再在600~900℃条件下处理6~20小时,从而得到本发明所述的锂离子二次电池负极材料ZnMn2O4。本发明制备的锂离子电池负极材料具有较高的容量,较稳定的循环倍率性能。

Patent Agency Ranking