-
公开(公告)号:CN119388843A
公开(公告)日:2025-02-07
申请号:CN202411309408.7
申请日:2024-09-19
Applicant: 北京宇航系统工程研究所 , 哈尔滨工业大学
IPC: B32B15/14 , B29D7/00 , B29C70/34 , B32B15/088 , B32B15/085 , B32B25/02 , B32B25/14 , B32B25/08 , B32B25/10 , B32B9/04 , B32B27/20 , B32B27/30 , B32B27/32 , B32B27/08 , B32B27/12 , B32B27/06 , B32B37/06 , B32B37/10 , G21F1/12 , B29L7/00
Abstract: 一种伽马射线屏蔽复合材料及其制备方法,属于屏蔽材料技术领域。本发明的目的是为了解决现有辐射屏蔽材料不能兼具高屏蔽性、柔性、高可随形性和可快速、便捷施工性等问题,所述复合材料由金属面层、柔性聚合物基复合材料屏蔽层和增强纤维层组成。所述金属面层由超薄铅膜和/或钽膜组成。所述柔性聚合物基复合材料屏蔽层由柔性聚合物材料和屏蔽填料组成。所述增强纤维层由尼龙纤维网、聚乙烯纤维网、聚丙烯纤维网中的一种或几种组成。本发明具有良好的伽马辐射屏蔽性能以及随形性的特点;柔性聚合物基复合材料屏蔽层具有良好的伽马射线屏蔽性能的特点;增强纤维层为新型异质多层辐射屏蔽复合材料提供优异的力学性能,包括拉伸性能和抗撕裂性能。
-
公开(公告)号:CN119361200A
公开(公告)日:2025-01-24
申请号:CN202411309409.1
申请日:2024-09-19
Applicant: 哈尔滨工业大学 , 北京宇航系统工程研究所
Abstract: 一种高辐照屏蔽颗粒材料及其制备方法,属于屏蔽材料技术领域。本发明的目的是为了解决现有辐射屏蔽材料不能兼具伽马射线的屏蔽性能、良好的柔性及便捷施工性等问题,所述颗粒材料由玻璃微球、化学镀镍层、电镀铅层、电镀钨层及电镀钽层组成。各层的厚度均控制在20μm。所述方法为由化学镀镍法将镍沉积在玻璃微球表面,之后采用电镀法依次沉积电镀铅层、电镀钨层及电镀钽层。对玻璃微球进行了预处理,并用化学镀镍的方法将镍沉积在其表面,这样可以使其他电镀层更容易沉积在其表面;其中电镀铅层和电镀钨层具有良好的伽马射线以及中子的复合屏蔽性能的特点;金属钽层具有良好的伽马射线屏蔽性能以及优异的力学性能。
-
公开(公告)号:CN119221325A
公开(公告)日:2024-12-31
申请号:CN202411309406.8
申请日:2024-09-19
Applicant: 哈尔滨工业大学 , 北京宇航系统工程研究所
Abstract: 一种燃料电池气体扩散层用碳纸及其制备方法,属于燃料电池技术领域。所述方法为:将碳纳米管在强酸下氧化,得羧基化碳纳米管;将其与可溶性铁盐溶液混合,加入氢氧化钠溶液,制备四氧化三铁/碳纳米管复合物;将其与粘接剂、树脂稀释剂、蒸馏水混合,得Pickring乳液粘接剂;将碳纤维分散于含有分散剂和表面活性剂的水溶液中,打浆制备碳纤维浆料,并抄纸得到碳纤维原纸;将碳纤维原纸浸泡在Pickring乳液粘接剂中,进行原位破乳,得到碳纤维粘接原纸;依次进行碳纤维粘接原纸除水、磁场控制磁性导电粒子取向、热压成型三道工序,即得碳纸。本发明方法简单且用量少,节约成本,保护环境,且避免了多次浸渍树脂,导致碳纸产生裂纹的问题。
-
公开(公告)号:CN114394264B
公开(公告)日:2024-06-25
申请号:CN202210044883.0
申请日:2022-01-14
Applicant: 哈尔滨工业大学
IPC: B64G4/00
Abstract: 一种太空垃圾清理系统及方法,属于太空垃圾处理技术领域。本发明的目的是为了解决传统太空垃圾清理措施效率低、成本高等问题,所述太空垃圾清理系统包括飞行控制系统以及与飞行控制系统机械连接的供电系统、火控雷达、发射机构及自毁弹体;所述供电系统与飞行控制系统、飞行控制系统与发射机构、火控雷达与发射机构之间均为电连接和信号连接,所述供电系统为飞行控制系统、火控雷达和发射机构供电,所述飞行控制系统处理供电系统、火控雷达及发射机构之间的信号交互,并通过供电系统电流通断实现飞行姿态调整、火控雷达定向与发射机构运行。本发明采用动能弹药高速撞击的方式对太空碎片进行快速降轨处理,机构简单、反应快、精准度高。
-
公开(公告)号:CN116053418A
公开(公告)日:2023-05-02
申请号:CN202310047928.4
申请日:2023-01-31
Applicant: 哈尔滨工业大学
IPC: H01M4/139 , H01M4/04 , H01M4/62 , H01M50/491 , H01M10/052 , H01M50/403
Abstract: 一种锂电池干法电极、隔膜及电池‑结构一体化材料的制备方法,属于锂电池制备技术领域。所述方法为:将环氧树脂、稀释剂、固化剂1和亲油性乳化剂均匀混合,得分散液1;将电解质溶液恒速滴入分散液1,恒温高速搅拌,获得油包水乳液;恒温下,将去离子水、亲水性乳化剂和固化剂2均匀混合,得分散液2;将油包水乳液加入分散液2中,高速乳化,获得水包油包水乳液体系;对水包油包水乳液体系进行升温固化;固化后离心、洗涤、干燥,得到固体纳米粘接剂;将固体纳米粘接剂研磨,随后均匀铺覆于模具中高温处理,得锂电池隔膜。本发明选用电解质溶液作为油包水乳液的内水相,可以增加乳液内部渗透压,防止乳液之间发生融合,使粒径增大。
-
公开(公告)号:CN113161624B
公开(公告)日:2022-06-21
申请号:CN202110496023.6
申请日:2021-05-07
Applicant: 哈尔滨工业大学
IPC: H01M10/058 , H01M10/052 , H01M10/0525
Abstract: 一种编织结构弹性锂电池的制备方法,属于材料制备领域。本方法以导电纤维束作为基本材料,吸附锂电池负极与正极材料后得导电纤维束负极与正极;分别浸渍纳米纤维分散液,干燥后得表面为纳米多孔膜结构的编织用纤维束负极与正极;采用编织机以编织用纤维束负极为编织线,弹性体丝条为芯进行包覆,形成弹性锂电池负极,浸渍于电解液中,将编织用纤维束正极继续编织到其表面,得到带有纳米纤维多孔隔膜的弹性锂电池结构;封装,即得到弹性锂电池。与现有技术相比,本发明提供的方法具有如下优势:编织结构弹性锂电池具有更加优异的弹性性能,电化学性能良好,有利于大规模生产使用。
-
公开(公告)号:CN111533930A
公开(公告)日:2020-08-14
申请号:CN202010393551.4
申请日:2020-05-11
Applicant: 哈尔滨工业大学
Abstract: 一种微纤化纤维增强复合材料的制备方法,它属于材料制备领域。它要解决现有纤维增强聚合物基复合材料的剪切性能和抗冲击性能弱的问题。方法:一、纤维清洗后烘干;二、纤维与二甲基亚砜进行溶胀,干燥后得微纤化纤维;三、微纤化纤维浸渍到树脂中进行超声处理,取出后再用树脂与固化剂混合物进行固化处理。本发明对纤维进行微纤化处理,增加其微观表面积,提高树脂浸渍效率;有效的提高纤维与树脂基体的界面附着力,改善界面性能;本发明制备的复合材料基体均匀,致密度高,具有更加优异的剪切性能,抗冲击性能优良。本发明应用于纤维增强复合材料制备领域。
-
公开(公告)号:CN108910861B
公开(公告)日:2020-02-11
申请号:CN201810523261.X
申请日:2018-05-28
Applicant: 哈尔滨工业大学
Abstract: 一种芳杂环纤维基纳米碳纤维气凝胶材料的制备方法,本发明涉及碳纤维气凝胶材料的制备领域。本发明要解决现有方法制备的碳气凝胶的氮含量低,韧性差的技术问题。本发明以芳杂环纤维为原料,通过溶液法制备芳纶纳米纤维分散液,采用反应促进凝胶化的方法使其凝胶化;然后,通过超临界二氧化碳干燥工艺制备芳纶纳米纤维气凝胶;最后,利用碳化工艺得到芳纶基纳米碳纤维气凝胶。本发明芳纶纳米纤维自身含有氮元素,炭化后依然能够在炭气凝胶内保留一定量的氮元素,所以该发明提供的方法可以直接获得原位掺杂型纳米碳纤维气凝胶,为制备超级电容器的电极材料打下了良好的基础。本发明用于制备芳杂环纤维基纳米碳纤维气凝胶。
-
公开(公告)号:CN104532632B
公开(公告)日:2018-03-16
申请号:CN201510012281.7
申请日:2015-01-09
Applicant: 哈尔滨工业大学
Abstract: 实现定点‑定力破断的纤维连接环的应用,涉及纤维连接环及其制造方法。是要解决目前使用火工微爆破进行绳索限位处破断方法破断点不可控,风险大的问题。该纤维连接环为芳纶纤维、聚对苯撑苯并双恶唑纤维、聚苯撑吡啶并咪唑纤维、聚酰亚胺纤维、超高分子量聚乙烯纤维、玻璃纤维、聚芳酯纤维中的一种或几种组成的混合纤维。方法:一、选取不同旦数的高性能纤维进行原纱加捻处理,编织获得两种拉伸强度不同的三股扭绳;二、将两种三股扭绳中间弯曲成环并彼此套结,并股;三、并股后的三股扭绳进行外包覆编织,即获得纤维连接环。此纤维连接环在定点‑定力破断的实现上具有很高的可靠性。用于航空航天领域。
-
公开(公告)号:CN107356497A
公开(公告)日:2017-11-17
申请号:CN201710612258.0
申请日:2017-07-25
Applicant: 哈尔滨工业大学
Abstract: 一种利用旋转流变仪测试环氧树脂上浆剂相反转点的方法,属于相反转点测试领域。所述方法步骤如下:一、制备不同固含量的乳液样品;二、用旋转流变仪进行测试;三、分析数据得到相反转点范围;四、利用偏光显微镜证明相反转点的存在且与旋转流变仪所测数据在同一范围内。本发明中的测试方式能够真实的反应在相反转过程中的剪切行为,能够抓住高聚合物在流动时所发生的如蠕变,屈服等行为对其本身流动性能的影响。通过设定准确的应力应变参数,能够最大限度的模拟了环氧树脂上浆剂在使用和应用时的操作环境,能够准确的跟踪各固含量下样品的流变行为,尽可能的减小误差,使得其相反转点的测试方法更加准确。
-
-
-
-
-
-
-
-
-