一种基于跨域元学习的文本验证码识别方法、设备及存储介质

    公开(公告)号:CN113139536B

    公开(公告)日:2022-11-18

    申请号:CN202110515675.X

    申请日:2021-05-12

    Abstract: 本发明涉及一种基于跨域元学习的文本验证码识别方法、设备及存储介质,包括:(1)元训练阶段:首先,生成大量带有不同安全特征的验证码图片作为基础训练数据;然后,进行字符分割,并将分割好的字符输入到ResNet神经网络模型中进行特征提取;最后,得到预估类别的损失值;(2)微调阶段:标注少量几张与元训练阶段中基础训练数据不同类型的验证码图片,对ResNet神经网络模型进行微调,得到最终的识别结果。本发明具有标注样本量极少,模型训练速度快,泛化能力强,识别准确率高的特点,解决了现有验证码识别方法需要大量标注数据以及模型迁移难度大等问题,能够满足工业化需求,具有广泛的应用前景。

    一种基于跨域元学习的文本验证码识别方法、设备及存储介质

    公开(公告)号:CN113139536A

    公开(公告)日:2021-07-20

    申请号:CN202110515675.X

    申请日:2021-05-12

    Abstract: 本发明涉及一种基于跨域元学习的文本验证码识别方法、设备及存储介质,包括:(1)元训练阶段:首先,生成大量带有不同安全特征的验证码图片作为基础训练数据;然后,进行字符分割,并将分割好的字符输入到ResNet神经网络模型中进行特征提取;最后,得到预估类别的损失值;(2)微调阶段:标注少量几张与元训练阶段中基础训练数据不同类型的验证码图片,对ResNet神经网络模型进行微调,得到最终的识别结果。本发明具有标注样本量极少,模型训练速度快,泛化能力强,识别准确率高的特点,解决了现有验证码识别方法需要大量标注数据以及模型迁移难度大等问题,能够满足工业化需求,具有广泛的应用前景。

Patent Agency Ranking