-
公开(公告)号:CN116503642A
公开(公告)日:2023-07-28
申请号:CN202310269638.4
申请日:2023-03-15
Applicant: 哈尔滨工业大学(深圳)
IPC: G06V10/764 , G06V10/42 , G06V10/82 , G06N3/098 , G06N20/20
Abstract: 本发明公开了一种基于改进联邦学习的数据分类方法、系统及相关设备,方法包括:目标客户端根据预设的改进联邦学习算法对其对应的待训练的数据分类模型进行模型迭代训练,获得对应的已训练的数据分类模型,目标客户端根据预设的改进联邦学习算法进行一轮迭代时,基于全局特征提取器模型参数、全局分类器模型参数和本地分类器模型参数对待训练的数据分类模型的模型参数进行调整,全局特征提取器模型参数和全局分类器模型参数由目标客户端从服务器获取,本地分类器模型参数由目标客户端从本地存储的数据获取;目标客户端获取待分类数据,通过对应的已训练的数据分类模型进行分类获取待分类数据对应的目标类别。本发明有利于提高数据分类的准确性。