-
公开(公告)号:CN117061356A
公开(公告)日:2023-11-14
申请号:CN202310885844.8
申请日:2023-07-19
Applicant: 哈尔滨工程大学
Abstract: 本发明属于通信网络拓扑结构推理技术领域,具体涉及一种面向感知网络的目标通信网络拓扑结构还原方法。本发明包括使用感知网络持续接收目标通信网络辐射的信号;以固定的时间间隔从连续采集的接收信号中提取离散的通信事件;将所有的通信事件建模为改进多维霍克斯过程,整理出似然函数;利用期望最大化算法求解似然函数,从解图结构中提取目标通信网络拓扑结构。本发明将感知网络接收的目标通信网络通信事件建模为统一的模型,能够综合考虑感知网络节点和通信网络节点对通信的影响;输出的是感知网络和目标通信网络综合的图结构表达,比一般的矩阵表现力更丰富,通过期望最大算法多次迭代即可算得最终的感知网络与目标通信网络的图结构。
-
公开(公告)号:CN116684233A
公开(公告)日:2023-09-01
申请号:CN202310710751.1
申请日:2023-06-15
Applicant: 哈尔滨工程大学
Abstract: 一种基于图像显著性检测的通信信号调制识别方法,它涉及一种通信信号调制识别方法。本发明为了解决现有通信信号调制识别方法不能在低信噪比情况下有效去除时频图像中背景噪声,导致对通信信号的调制识别准确率较低的问题。本发明能够在低信噪比情况下有效去除时频图像中的背景噪声,提高对通信信号的调制识别准确率。本发明属于通信信号调制识别技术领域。
-
公开(公告)号:CN113343796B
公开(公告)日:2022-04-05
申请号:CN202110569016.4
申请日:2021-05-25
Applicant: 哈尔滨工程大学
Abstract: 本发明属于深度学习与雷达信号调制识别技术领域,具体涉及一种基于知识蒸馏的雷达信号调制方式识别方法。本发明结合知识蒸馏的思想,利用知识蒸馏的网络压缩方法设计轻量化网络,对设备内存要求低,有利于集成到芯片,部署到终端设备。本发明提出利用两个教师网络完成知识蒸馏训练,将低信噪比情况下时频结构受损严重的雷达信号单独训练第二教师网络,得到软标签作为监督信息,能够提高轻量化网络在低信噪比情况下的识别正确率。本发明所提到的网络都采用的是残差网络,能够提取到时频图像更深层的特征,对多种雷达信号具有良好的适应性。本发明在使识别网络轻量化的同时,能够在较低信噪比下对雷达信号的调制方式有较高的识别正确率。
-
公开(公告)号:CN113837059A
公开(公告)日:2021-12-24
申请号:CN202111104530.7
申请日:2021-09-22
Applicant: 哈尔滨工程大学
Abstract: 本发明属于监测预警安保技术领域,具体涉及一种规劝行人及时佩戴口罩的巡视车及其控制方法。本发明针对室内公共场合,通过巡检系统自身所携带深度相机采集的RGB彩色图像和深度图像完成室内栅格地图的构建;并通过相邻图片之间的特征匹配计算出检测巡视车相对于世界坐标系的位置,完成自身的定位;通过构建卷积神经网络模型,能够完成对于行人是否佩戴口罩的特征提取和识别;通过路径规划导航以及障碍物避障模块完成检测巡视车自主移动至目标的功能;最终通过目标跟随模块以及语音模块完成了巡检系统对未佩戴口罩行人的规劝功能以及对于防疫知识的宣传工作。
-
公开(公告)号:CN113376586A
公开(公告)日:2021-09-10
申请号:CN202110618941.1
申请日:2021-06-03
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种双分量雷达信号分类模型构建方法,先采用改进的平滑伪Wigner‑Ville分布(SPWVD)将双分量雷达信号转换为时频图像,制作数据集,包括训练集、验证集和测试集;构建一种基于深度卷积神经网络的双分量雷达信号学习框架,用于提取八类双分量雷达信号特征;设计超参数防止过拟合并对网络模型进行优化;构建一种多类别分类器,用于分类八类随机交叠的双分量雷达信号类别。本发明提出利用深度卷积神经网络提取更有效的双分量雷达信号特征,采用多类别分类器准确和快速的识别双分量雷达信号,可用于复杂电磁环境下的双分量雷达信号识别。
-
公开(公告)号:CN107577999B
公开(公告)日:2021-01-12
申请号:CN201710722275.X
申请日:2017-08-22
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于奇异值和分形维数的雷达信号脉内调制方式识别方法,属于雷达信号分选与识别领域。该发明首先通过Choi‑Williams分布(CWD)得到信号的时频图像,提取时频图像的奇异值;然后再提取信号频谱的盒维数与信息维数,组成特征向量;最后使用基于支持向量机的分类器(SVM)实现雷达信号的分类识别。该方法能够在低信噪比条件下实现对雷达信号的有效识别,解决了在信噪比低的情况下雷达信号识别率低的问题。本发明所述的雷达信号识别方法在低信噪比条件下识别率高,鲁棒性好,适应信号类型多,具有良好应用前景。
-
公开(公告)号:CN111582236A
公开(公告)日:2020-08-25
申请号:CN202010461186.6
申请日:2020-05-27
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于稠密卷积神经网络的LPI雷达信号分类方法,首先制作数据集,获取几种不同脉内调制方式的LPI雷达信号,对雷达信号进行时频分布处理,得到时频图像;采用图像处理技术,对时频图像进行预处理。然后构建一种基于稠密卷积神经网络的特征提取与分类方法。为了加快和优化所提模型的学习效率,采用迁移学习对网络模型进行预训练,利用Adam算法对网络参数进行优化训练。最后采用SoftMax分类器准确获得8个LPI雷达信号分类结果。本发明提出利用稠密卷积神经网络,能更充分提取雷达信号特征,加强特征重利用,从而提高雷达波形在低信噪比下的识别性能,可用于复杂电磁环境下的雷达信号识别。
-
公开(公告)号:CN111273215A
公开(公告)日:2020-06-12
申请号:CN201911281522.2
申请日:2019-12-13
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了信道状态信息的通道不一致性误差校正测向方法,属于室内定位技术领域。实现步骤如下:对CSI测向算法进行建模;利用单天线数据计算直达波飞行时间ToF;成对天线间CSI数据平滑处理增加接收阵列孔径;利用直达波飞行时间ToF和直达波入射角度先验信息进行成对天线间幅相误差计算;根据离线数据建立不同来波方向情况下幅相误差表格,在线过程中对照表格动态选取Γ值,进行通道幅相误差校正和迭代测向。本发明解决了商用Wi-Fi网卡复杂的通道间幅相误差校正问题,保证了Wi-Fi网卡CSI测向的精度,有效降低基于商用Wi-Fi网卡的室内定位系统部署使用的复杂度和成本,应用前景广阔,而且操作简单、不需要专用设备、能有效适应室内多径环境。
-
公开(公告)号:CN110764063A
公开(公告)日:2020-02-07
申请号:CN201910976041.7
申请日:2019-10-15
Applicant: 哈尔滨工程大学
Abstract: 本发明属于电子对抗技术领域,具体涉及使搜索效果更快更明显的一种基于SDIF与PRI变换法结合的雷达信号分选方法。本方法包括如下步骤:对雷达信号进行预分组;利用SDIF方法对预分选后的雷达分组建立到达时间级差直方图;依据雷达信号模型时域特点快速搜索提取雷达信号;建立一级差直方图快速分析参差信号;判断是否仍有复杂类型雷达信号残留;查询各模块分选结果。本发明的有益效果在于:预分选与主分选结合,将SDIF与PRI变换法结合作为主分选,SDIF部分对复杂雷达电磁环境中常规信号、参差信号、脉间捷变频以及脉组捷变频信号进行快速而有效的分选,PRI变换法部分分选剩余的抖动信号,各部分算法各司其职,承上启下,组合成有效快速的综合分选算法。
-
公开(公告)号:CN110531321A
公开(公告)日:2019-12-03
申请号:CN201910787516.8
申请日:2019-08-26
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及雷达信号处理领域,具体涉及基于特征值的动态信道化子带频谱检测方法。根据信道化输出的第i路子带信号,经单通道信号的多通道转换,得到M×N维观测矩阵,构造采样协方差矩阵;根据采样协方差矩阵进行特征分解,得到相对应形式平均特征值和当前子带最小特征值,构造相应算法的检测统计量;根据实际情况通过虚警概率,得到相应算法检测门限的表达式;根据相应的检测算法的判决表达式,确定信号是否存在,即当α>γ时,判断存在信号,否则不存在。相对于目前的经典频谱检测处理方法,本发明在低信噪比、低采样点的条件下,获得了更高的检测性能,提高了检测的精确程度,更加符合未来电子战中的信号电磁环境。
-
-
-
-
-
-
-
-
-