一种基于询问应答模式的水下高速目标高精度自主声学导航方法

    公开(公告)号:CN110132281B

    公开(公告)日:2023-10-20

    申请号:CN201910424453.X

    申请日:2019-05-21

    IPC分类号: G01C21/20 G01C21/12 G01S5/18

    摘要: 本发明公开了一种基于询问应答模式的水下高速目标高精度自主声学导航方法,包括以下步骤:首先,由获取到的时延信息估计目标径向运动速度,进而获得目标到应答器的距离信息,依据此距离信息构建声学自导航模型并确定权系数;其次,根据自导航模型和权系数确定目标函数,并利用传统方法解算得到的目标位置作为优化算法的搜索初值;最后,采用LMS牛顿算法解算获得目标位置。本发明引入了目标径向速度参量,消除了由目标运动速度引起的模型误差,受目标运动速度影响小;引入了权系数,对误差较大的成分给予较小的权重,有效提高了水下高速运动目标的自导航精度;采用LMS牛顿算法结构简单,计算量小,稳健性强,收敛速度快,便于实时实现。

    基于密度聚类的RBMCDA水下多目标跟踪方法

    公开(公告)号:CN110361744B

    公开(公告)日:2022-11-01

    申请号:CN201910614850.3

    申请日:2019-07-09

    IPC分类号: G01S15/66 G06K9/62 G06N3/00

    摘要: 本发明是于密度聚类的RBMCDA水下多目标跟踪方法。本发明对每个粒子初始权重置,获得初始时刻粒子群数据;计算可见目标死亡概率,随机抽取死亡目标,对所有粒子存活目标状态进行预测;根据更新后的每个粒子的权值,采用重采样法对粒子状态和粒子目标标签矩阵进行重采样;采用密度聚类算法对所有粒子的所有目标状态估计结果聚类,对每个簇每个样本按理权值加权求和,获得所述每个簇的状态均值;每个粒子标签向量分别与目标标签矩阵相匹配,获得每个聚类簇的系统目标编号,更新目标标签矩阵,获得新的目标标签矩阵;根据粒子数据的密度聚类和目标编号管理结果,输出当前时刻所有目标编号及状态均值。

    水声定位导航系统阵元位置校准测量点间距优化方法

    公开(公告)号:CN110133627B

    公开(公告)日:2022-06-14

    申请号:CN201910423907.1

    申请日:2019-05-21

    IPC分类号: G01S7/52

    摘要: 本发明是水声定位导航系统阵元位置校准测量点间距优化方法。本发明建立了阵元位置精确校准优化模型,时延测量误差与收发距离的关系式,阵元位置校准时延估计误差传递函数;采用差分进化算法进行求解,获得待测阵元位置估计结果及误差。采用统计学方法获得阵元位置校准精度;通过筛选所有结果获得最佳测量点间距。本发明消除了测量船运动所引起的模型失配误差;建立了时延测量误差与收发距离的关系式,考虑了测量时延误差随收发距离变化的变化,相对传统的采用固定时延测量误差的做法,误差分析更与实际相符。通过水声定位导航系统阵元位置校准测量点间距优化,获得了最佳测量点间距,有利于进一步地提高阵元位置的校准精度。

    基于直达声和一次海面反射声传播时延的水下单信标导航方法

    公开(公告)号:CN113702907B

    公开(公告)日:2022-05-03

    申请号:CN202110908227.6

    申请日:2021-08-09

    IPC分类号: G01S5/18 G01C21/16 G01C21/20

    摘要: 本发明公开了一种基于直达声和一次海面反射声传播时延的水下单信标导航方法,包括:步骤S1,从发射信号获取直达声和一次海面反射声的传播时延信息;步骤S2,根据传播时延信息建立描述目标AUV和声信标在两个信号发射周期内的相对几何位置关系的等式,组成导航方程组;步骤S3,采用牛顿迭代法对导航方程组进行求解,得到AUV位置。该方法相比于传统的仅利用直达声传播时延的单信标导航方法,可以有效提高导航精度,具有广泛的应用前景,在民用领域,可应用在资源勘测、海底绘图和水下设备检修等,在军事领域可应用于反潜和水下排雷等。

    一种基于二维功率分布的少阵元阵列高分辨方位估计方法

    公开(公告)号:CN113640737A

    公开(公告)日:2021-11-12

    申请号:CN202110849776.0

    申请日:2021-07-27

    IPC分类号: G01S3/80 G01S3/86

    摘要: 本发明是一种基于二维功率分布的少阵元阵列高分辨方位估计方法。本发明获取基阵接收信号,对阵元接收信号做克罗内克积运算;将运算结果作为新采集信号,进行CBF功率谱,选择空间观察角度区间,根据所选择的观察角度构造三维功率谱矩阵;根据步得到的CBF功率谱和三维功率谱矩阵,利用压缩感知方法确定二维功率分布矩阵;根据二维功率分布矩阵的每一列求取最大值,并将结果作为新算法的功率谱,用于DOA估计。二维矩阵中的数据受到两个角度集的相互制约,在提高估计精度的同时,降低了高分辨能力对阵元个数的需求,有效地提高在少阵元阵列时的估计精度和分辨力。