一种光纤阵列与蝇眼透镜的对准系统及方法

    公开(公告)号:CN109375330B

    公开(公告)日:2021-03-30

    申请号:CN201811216179.9

    申请日:2018-10-18

    IPC分类号: G02B7/00 G02B7/02 G02B6/32

    摘要: 本发明公开了一种光纤阵列与蝇眼透镜的对准系统及方法,属于光纤阵列与蝇眼透镜的对准领域。包括平行光路,调节系统和观测系统三部分。平行光路包括激光光源、平行光管以及两个可调光阑;调节系统包括一个五维调节台和一个六维调节台;观测系统包括蝇眼端观测系统和狭缝端观测系统两部分;三个显微成像系统在水平,垂直和正面三个方向观察光纤阵列和蝇眼透镜的的对准情况,通过狭缝端的观测系统确定亮度均匀性,从而可以判定光纤阵列和蝇眼透镜已经处于对准状态。可以实现光纤阵列与蝇眼透镜的非接触对准,避免了对准端面的损伤,三维对准方法可以使对准过程变得简洁易行,并且减少了对准时的误差,较大的提高蝇眼透镜与光纤阵列的对准精度。

    一种基于透镜阵列的二次分像方法

    公开(公告)号:CN109856807A

    公开(公告)日:2019-06-07

    申请号:CN201910118321.4

    申请日:2019-02-15

    摘要: 本发明属于大视场天文成像的二次像切分领域,具体涉及一种基于透镜阵列的二次分像方法。首先在前端成像系统的成像面上放置分区凸透镜阵列,对其进行第一次分像,再经过反射镜实现光路的转折,在第一次分像后所成的像面上再次放置微透镜阵列,进行二次分像,微透镜阵列后加光纤阵列,最后实现三维成像。本发明基于透镜阵列的二次分像方法,可以实现对大天区的分区,在分辨率不变的情况下减小每个分区的成像尺寸,因为每一个分区有相对应的积分视场单元,从而减小了单个积分视场单元的尺寸大小,避免了微透镜阵列过大、积分视场单元尺寸过大带来的加工问题和操作问题。

    一种用于积分视场单元的错排双层光纤阵列

    公开(公告)号:CN109407207A

    公开(公告)日:2019-03-01

    申请号:CN201811017371.5

    申请日:2018-09-01

    IPC分类号: G02B6/08

    摘要: 本发明属于天文学研究领域,具体涉及一种用于积分视场单元的错排双层光纤阵列。由上基板、下基板、被放置于V型槽a中的光纤阵列以及V型槽b组成,上基板和下基板上均有V型槽a,且上基板的V型槽a和下基板的V型槽a相互交错排列并且间距相等,上基板的V型槽a和下基板的V型槽a在水平方向错开65微米,光纤阵列放置于V型槽a内。本装置的光纤阵列排列方式相对比其他单排或者简单的双排方式制作工艺以及封装的难度并没有增加,反而由于错排的排列方式使封装变得更加简便,此外排列方式有了明显的改进,错排的方法使光纤排列更加紧密,将狭缝端长度减小为原来的一半,减少了望远镜的制作成本。

    一种光纤阵列与蝇眼透镜的对准系统及方法

    公开(公告)号:CN109375330A

    公开(公告)日:2019-02-22

    申请号:CN201811216179.9

    申请日:2018-10-18

    IPC分类号: G02B7/00 G02B7/02 G02B6/32

    摘要: 本发明公开了一种光纤阵列与蝇眼透镜的对准系统及方法,属于光纤阵列与蝇眼透镜的对准领域。包括平行光路,调节系统和观测系统三部分。平行光路包括激光光源、平行光管以及两个可调光阑;调节系统包括一个五维调节台和一个六维调节台;观测系统包括蝇眼端观测系统和狭缝端观测系统两部分;三个显微成像系统在水平,垂直和正面三个方向观察光纤阵列和蝇眼透镜的的对准情况,通过狭缝端的观测系统确定亮度均匀性,从而可以判定光纤阵列和蝇眼透镜已经处于对准状态。可以实现光纤阵列与蝇眼透镜的非接触对准,避免了对准端面的损伤,三维对准方法可以使对准过程变得简洁易行,并且减少了对准时的误差,较大的提高蝇眼透镜与光纤阵列的对准精度。

    一种基于透镜阵列的二次分像方法

    公开(公告)号:CN109856807B

    公开(公告)日:2020-12-22

    申请号:CN201910118321.4

    申请日:2019-02-15

    摘要: 本发明属于大视场天文成像的二次像切分领域,具体涉及一种基于透镜阵列的二次分像方法。首先在前端成像系统的成像面上放置分区凸透镜阵列,对其进行第一次分像,再经过反射镜实现光路的转折,在第一次分像后所成的像面上再次放置微透镜阵列,进行二次分像,微透镜阵列后加光纤阵列,最后实现三维成像。本发明基于透镜阵列的二次分像方法,可以实现对大天区的分区,在分辨率不变的情况下减小每个分区的成像尺寸,因为每一个分区有相对应的积分视场单元,从而减小了单个积分视场单元的尺寸大小,避免了微透镜阵列过大、积分视场单元尺寸过大带来的加工问题和操作问题。