-
公开(公告)号:CN118053450B
公开(公告)日:2025-03-07
申请号:CN202410266452.8
申请日:2024-03-08
Applicant: 哈尔滨工程大学
IPC: G10L25/51 , G10L25/27 , G10L19/022 , G10L19/18 , G10L15/18
Abstract: 本发明为一种利用元数据生成音频预测未知异常的异音检测方法,解决了目标机器异常音频样本对现有异音检测模型不可见导致异音检测模型无法选择超参数,异音检测系统性能受限的问题。本发明提供的异常样本预测策略借助音频特征和元数据信息特征对齐构建基于元数据信息的音频生成方法,进而预测未知的目标机器类型异常声音特性,为现有异常声音检测方法在First‑Shot场景下生成了可用于模型训练的目标机器预测声音样本,借助于预测声音样本,异音检测方法能在复杂的异常声音检测现实场景中确定最优模型,提升异音检测方法的性能和通用性。同时,本发明构建的统一的样本生成模型,缓解了现实场景中异常样本稀缺问题,有效降低了异音检测方法的工业化部署难度。
-
公开(公告)号:CN116230015B
公开(公告)日:2023-08-08
申请号:CN202310240262.4
申请日:2023-03-14
Applicant: 哈尔滨工程大学
Abstract: 本发明提出一种基于音频时序信息加权的频域特征表示异音检测方法,能够有效区分正常信息和异常信息,提升异常声音检测的稳定性和对不同机器的适应性。本发明通过对原始音频信号获取Log‑Mel谱频域特征,并在时间维度上对其应用全局加权排序池化,得到音频信号的基于音频时序信息加权的频域特征表示,解决了对稳定音频信号和非稳定音频信号的平衡问题。并基于音频时序信息加权的频域特征表示,针对不同机器类型,根据最佳检测性能,找到全局加权排序池化最合适的池化参数,实现用于异常声音检测的更鲁棒性的音频特征表示。
-
公开(公告)号:CN116230015A
公开(公告)日:2023-06-06
申请号:CN202310240262.4
申请日:2023-03-14
Applicant: 哈尔滨工程大学
Abstract: 本发明提出一种基于音频时序信息加权的频域特征表示异音检测方法,能够有效区分正常信息和异常信息,提升异常声音检测的稳定性和对不同机器的适应性。本发明通过对原始音频信号获取Log‑Mel谱频域特征,并在时间维度上对其应用全局加权排序池化,得到音频信号的基于音频时序信息加权的频域特征表示,解决了对稳定音频信号和非稳定音频信号的平衡问题。并基于音频时序信息加权的频域特征表示,针对不同机器类型,根据最佳检测性能,找到全局加权排序池化最合适的池化参数,实现用于异常声音检测的更鲁棒性的音频特征表示。
-
公开(公告)号:CN113838064A
公开(公告)日:2021-12-24
申请号:CN202111115253.X
申请日:2021-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于遥感图像处理技术领域,具体涉及一种基于分支GAN使用多时相遥感数据的云去除方法。本发明设计了一个深度卷积编码器‑解码器网络模型用于遥感图像云检测,以及一个分支GAN模型用于遥感图像的云去除,在保证云去除效果的同时,提升了重建像素的分辨率。本发明利用最大池化索引来进行输入图像特征图的非线性上采样,减少了端到端训练的参数量,提高了网络训练的时间;采用分支UNet结构来融合多时相遥感图像的特征信息,通过共享底层的语义信息,有效提高遥感图像云去除的精度。
-
公开(公告)号:CN112562702A
公开(公告)日:2021-03-26
申请号:CN202011374653.8
申请日:2020-11-30
Applicant: 哈尔滨工程大学
IPC: G10L21/003 , G10L25/18 , G10L25/24
Abstract: 本发明提供一种基于循环帧序列的门控循环单元网络的语音超分辨率方法,包括如下步骤:(1)对原始语音信号进行预处理;(2)提出构建CFS‑GRU模型;(3)完成基于循环帧序列网络的语音超分辨率。本发明基于GRU搭建的循环结构模型,直接将语音信号序列作为输入,很大程度上减小了计算代价,并且相比于传统方法有着较好的超分辨率效果;相比于LSTM,GRU模型有着较少的模型参数,通过GRU搭建的CFS‑GRU模型能够更快的训练和收敛。使用SegSNRLoss作为损失函数训练的CFS‑GRU模型能够更快的收敛,并且能够使输出帧序列有着较高的信噪比,提高超分辨率语音信号的质量。
-
公开(公告)号:CN113838107B
公开(公告)日:2023-12-22
申请号:CN202111117036.4
申请日:2021-09-23
Applicant: 哈尔滨工程大学
IPC: G06T7/33 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/75 , G06V10/82 , G06N3/0464 , G06N3/044 , G06N3/0455 , G06N3/0475 , G06N3/094
Abstract: 本发明属于遥感图像配准技术领域,具体涉及一种基于稠密连接的异源图像自动配准方法。本发明先对SAR与光学图像进行转换,再使用结合注意力机制的卷积神经网络进行特征点的提取,接着将提取到的特征点进行特征编码并完成预匹配,通过使用高斯混合模型进行动态内联点选择,从而完成特征点的匹配,最后进行图像配准,得到最终结果。本发明通过使用循环生成式对抗网络,解决了异源图像因成像原理不同给配准带来的困难,同时使用改进后的稠密连接Densenet结构提取特征点,极大提高了精度,从而提升后续模型配准的性能。
-
公开(公告)号:CN116230012B
公开(公告)日:2023-08-08
申请号:CN202310177110.4
申请日:2023-02-28
Applicant: 哈尔滨工程大学
Abstract: 本发明提出了一种基于元数据对比学习预训练的两阶段异音检测方法,属于声音检测领域,解决了现有单阶段异音检测方法对声音信号与其对应元数据信息匹配关系发掘程度不高,难以区分不同元数据信息下声音信号差异的问题。本发明提供的两阶段异音检测方法包含元数据对比学习预训练和自监督微调两个阶段,元数据对比学习预训练阶段加强了相同元数据信息下的声音信号关联,放大了不同元数据信息下声音信号的距离,学习到了能够根据元数据信息区分不同声音信号的能力;自监督微调部分在元数据对比学习获得的预训练参数基础上,进行优化微调,进一步提升了对不同元数据信息下声音信号的区别能力,进而提升了异音检测方法的性能表现与稳定性。
-
公开(公告)号:CN114154538B
公开(公告)日:2022-09-02
申请号:CN202111421620.9
申请日:2021-11-26
Applicant: 哈尔滨工程大学
Abstract: 本发明属于工业声音异常检测技术领域,具体涉及一种基于相位编码和设备信息的工业声音异常检测系统。本发明能借助相位信息补足工业声音信号的精细度,获得高精度的声学特征,能够对高精度的声学特征进行建模,着重提升系统对于异常信息的敏感度,同时感知到不同工业设备之间的细微差异,规避了设备之间产生的声学干扰,并对建模结果进行高效率高精度的异常分数判定,具备优秀的工业声音异常检测性能。
-
公开(公告)号:CN114155835B
公开(公告)日:2022-07-08
申请号:CN202111475701.7
申请日:2021-12-06
Applicant: 哈尔滨工程大学
IPC: G10L15/02 , G10L15/06 , G10L15/16 , G10L15/26 , G10L25/30 , G10L25/51 , G06F40/216 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种音频语意概述方法,具体为一种融合全局场景与局部事件信息的音频语意概述方法,首先对实际场景中产生的音频进行建模分析,随后从声学场景的宏观全局特性入手,并融合了对于场景内各音频事件的精细化感知,最终生成贴合人类自然语言逻辑的语意概述文本,本发明对于声学场景中局部声音事件的精细化感知为构建音频特征的语意信息与自然语言语意信息的映射提供了细粒度的信息感知方式,能够有效规避传统方法对于音频事件的误识别与内容忽略,有助于构建更高语意层次的人机交互过程;此外,本发明提供了全新的注意力计算机制,相比传统注意力机制降低了计算成本。
-
公开(公告)号:CN114155879A
公开(公告)日:2022-03-08
申请号:CN202111475597.1
申请日:2021-12-06
Applicant: 哈尔滨工程大学
Abstract: 本发明公开的属于异音检测方法技术领域,具体为一种利用时频融合补偿异常感知及稳定性的异音检测方法,借助从声学目标原始音频信号x∈R1*L获取的时域信息和频域信息形成感知互补;时频域融合特征输入深度神经网络,经过网络学习从而获得对于待检测声学目标的状态感知,针对现有异音检测方法所采用的Log‑Mel谱特征对一定声学目标缺乏感知能力的问题,本发明设计了从时域角度构建的可学习特征与Log‑Mel谱相融合,实现了时频域信息互补的双赢增益机制,本发明设计的时频域融合的可学习特征能够有效地提升异音检测系统的稳定性,解决现有工业异音检测方法稳定性不足,检测结果可信度低的问题。
-
-
-
-
-
-
-
-
-