一种基于卷积神经网络的SAR图像的配准方法

    公开(公告)号:CN110827332A

    公开(公告)日:2020-02-21

    申请号:CN201910951705.4

    申请日:2019-10-09

    Abstract: 本发明涉及一种基于卷积神经网络的SAR图像的配准方法领域,所述方法包括如下步骤:获取SAR参考图像及待配准SAR实时图,其中实时图与参考图像为同一区域的两幅图像;对参考图像利用BNLMF滤波器算法降噪处理,并提取SIFT特征点,构造训练用数据集,训练AlexNet卷积网络,并得到网络模型;对待配准实时图利用BNLMF滤波器算法降噪,提取SIFT特征点,构造实时图的样本集;将实时图的样本集输入到训练好的AlexNet卷积网络模型中,预测匹配关系,获得初始匹配特征点对。本发明方法能够提升数据拟合的鲁棒性,抑制积累误差对数据造成进一步的干扰,从而实现对变换矩阵的稳健估计,有效提升配准精度。

    一种基于改进Alexnet模型的尿液有形成分识别方法

    公开(公告)号:CN110473166A

    公开(公告)日:2019-11-19

    申请号:CN201910614832.5

    申请日:2019-07-09

    Abstract: 本发明涉及医学图像处理领域,具体涉及一种基于改进Alexnet模型的尿液有形成分识别方法。步骤一:采集和扩充图像数据集,构建尿沉渣图像训练集和测试集;步骤二:构建基于Alexnet网络模型的尿液有形成分识别网络模型;步骤三:设置尿液有形成分识别网络模型的训练参数;步骤四:训练基于Alexnet网络模型的尿液有形成分识别网络模型;步骤五:测试基于Alexnet网络模型的尿液有形成分识别网络模型;本发明在Alexnet网络模型的基础上进行了改进,减少了网络训练参数量,能够自动提取图像特征,具有识别率高、识别时间快、泛化能力强的特点,对于辅助医疗诊断、减轻医生负担具有重要的应用前景。

    一种基于卷积神经网络的SAR图像的配准方法

    公开(公告)号:CN110827332B

    公开(公告)日:2022-12-13

    申请号:CN201910951705.4

    申请日:2019-10-09

    Abstract: 本发明涉及一种基于卷积神经网络的SAR图像的配准方法领域,所述方法包括如下步骤:获取SAR参考图像及待配准SAR实时图,其中实时图与参考图像为同一区域的两幅图像;对参考图像利用BNLMF滤波器算法降噪处理,并提取SIFT特征点,构造训练用数据集,训练AlexNet卷积网络,并得到网络模型;对待配准实时图利用BNLMF滤波器算法降噪,提取SIFT特征点,构造实时图的样本集;将实时图的样本集输入到训练好的AlexNet卷积网络模型中,预测匹配关系,获得初始匹配特征点对。本发明方法能够提升数据拟合的鲁棒性,抑制积累误差对数据造成进一步的干扰,从而实现对变换矩阵的稳健估计,有效提升配准精度。

Patent Agency Ranking