-
公开(公告)号:CN112328588A
公开(公告)日:2021-02-05
申请号:CN202011352099.3
申请日:2020-11-27
Applicant: 哈尔滨工程大学
IPC: G06F16/215 , G06N3/04
Abstract: 本发明公开了一种工业故障诊断非平衡时序数据扩充方法,步骤一:准备训练数据集;步骤二:构建GRU‑BEGAN的网络结构;步骤三:训练构建的GRU‑BEGAN网络模型;步骤四:根据训练好的GRU‑BEGAN生成对抗网络模型去生成小样本类型的人工数据,训练完成后的模型输入简单随机变量z|t,生成符合时间t的时序数据,将生成的数据集扩充至原始数据的小样本类型中,根据扩充后的数据集建立1D/2D‑CNN故障诊断模型。本发明在模型结构和损失函数上的改进使得模型收敛更快、数据质量更高,利用端到端的GRU‑BEGAN模型去训练故障数据中小样本时序数据集,得到生成的人工数据去增强原始数据集,提高故障诊断模型精确度。
-
公开(公告)号:CN112328588B
公开(公告)日:2022-07-15
申请号:CN202011352099.3
申请日:2020-11-27
Applicant: 哈尔滨工程大学
IPC: G06F16/215 , G06N3/04
Abstract: 本发明公开了一种工业故障诊断非平衡时序数据扩充方法,步骤一:准备训练数据集;步骤二:构建GRU‑BEGAN的网络结构;步骤三:训练构建的GRU‑BEGAN网络模型;步骤四:根据训练好的GRU‑BEGAN生成对抗网络模型去生成小样本类型的人工数据,训练完成后的模型输入简单随机变量z|t,生成符合时间t的时序数据,将生成的数据集扩充至原始数据的小样本类型中,根据扩充后的数据集建立1D/2D‑CNN故障诊断模型。本发明在模型结构和损失函数上的改进使得模型收敛更快、数据质量更高,利用端到端的GRU‑BEGAN模型去训练故障数据中小样本时序数据集,得到生成的人工数据去增强原始数据集,提高故障诊断模型精确度。
-