一种基于边界查找的双向跳点搜索无人车路径规划方法

    公开(公告)号:CN113515129B

    公开(公告)日:2022-02-11

    申请号:CN202110965209.1

    申请日:2021-08-23

    IPC分类号: G05D1/02

    摘要: 本发明涉及一种基于边界查找的双向跳点搜索无人车路径规划方法。所述方法包括:使用膨胀法对障碍物进行处理,采用栅格法划分搜索区域,将正向搜索和反向搜索的起始节点分别放入OpenList1和OpenList2中,从正向和反向进行跳点交替迭代搜索,利用边界查找优化水平和垂直方向的节点搜索和跳点识别,且将跳点分别添加到OpenList1和OpenList2中,采用改进的正向和反向启发式估价函数分别计算OpenList1和OpenList2中代价最小的跳点,直到正向和反向搜索的当前节点重合,搜索成功并保存正反方向搜索的路径节点即跳点坐标数据,采用微分平坦方法对生成的路径节点作曲线拟合。本发明可有效提高节点搜索和跳点识别效率,减少路径寻优时间,保证路径最优性,避免拟合后的路径与障碍物碰撞。

    基于多策略动态调整的两栖车辆排样面积利用最大化方法

    公开(公告)号:CN112418528A

    公开(公告)日:2021-02-26

    申请号:CN202011326002.1

    申请日:2020-11-24

    IPC分类号: G06Q10/04 G06Q50/26 G06N3/12

    摘要: 本发明涉及一种基于多策略动态调整的两栖车辆排样面积利用最大化方法,本发明包括:获取车辆舱甲板和车辆相关信息,明确约束条件,确定目标函数,采用十进制编码对车辆进行编码,并对参数进行初始化,随机生成车辆排样序列构成初始种群,计算个体的适应度值,保存最优个体,判断是否达到最大迭代次数,依据三种不同的评价策略和动态调整的选择概率对三个子种群规模动态调整,用最优个体与子种群中所有个体进行有约束交叉或环形交叉,采用动态调整的变异概率进行变异操作,选择三个子种群中的有效进化个体构成新种群,对最后一代的最优个体进行解码,得到最优排样图。本发明的优点是能够快速求解得到最优排样图,实现两栖车辆排样面积利用最大化。

    一种基于流固耦合的船用鳍主动柔顺控制方法

    公开(公告)号:CN113848729A

    公开(公告)日:2021-12-28

    申请号:CN202111212870.1

    申请日:2021-10-19

    IPC分类号: G05B13/04

    摘要: 本发明公开了一种基于水弹性力学、流固耦合和虚拟阻尼的船用鳍阻抗控制方法,旨在解决船用鳍在水中的主动柔顺控制问题,具体包括以下步骤:建立鳍体的欧拉‑拉格朗日动力学方程,以中心轴的转动角度、角速度和角加速度作为系统输入,并引入期望参考力实现力跟踪效果,以中心轴作为末端执行器,得到以鳍体为外部物体的阻抗控制系统,将流体对鳍体产生的附加特性整合到鳍体的阻抗特性,设计基于流固耦合的阻抗控制方法;最后进行稳定性分析,证明系统的阻抗误差收敛到零或零的邻域;同时,依据阻抗参数选取规则,以确定虚拟阻尼的方式实现参数优化,实现阻抗控制系统的参数优化。本发明贴近实际,柔顺控制效果好,力和位置跟踪更为准确。

    一种改进LQR的船用起重机控制方法

    公开(公告)号:CN113387276B

    公开(公告)日:2021-12-14

    申请号:CN202110773970.5

    申请日:2021-07-08

    IPC分类号: B66C13/18 B66C13/06

    摘要: 本发明涉及一种改进LQR的船用起重机控制方法,旨在解决传统LQR因不易选取最佳权重矩阵而导致船用起重机作业时减摆效果不佳、响应速度慢的问题,具体步骤如下:首先构建船用起重机负载摆角的动力学模型,将此动力学模型经过线性化处理转化为状态空间方程,然后利用LQR控制方法将负载摆角问题转化为二次型性能指标中权重矩阵参数的优化整定问题,最后基于折射原理改变群体中最优个体的更新机制来改进灰狼优化算法(GWO),用于整定LQR控制器最优权重矩阵,从而获得系统最优性能指标。本发明提高了权重矩阵参数的适应性,对负载的摆角抑制效果好,响应速度快,有效地提高船用起重机吊装作业的工作效率。

    基于深度强化学习的舰载机保障作业人员调度方法

    公开(公告)号:CN113706023A

    公开(公告)日:2021-11-26

    申请号:CN202111009089.4

    申请日:2021-08-31

    摘要: 本发明公开了一种基于深度强化学习的舰载机保障作业人员调度方法,包括以下步骤:构建舰载机保障过程的马尔可夫决策过程(Markov Decision Process,MDP)模型,作为智能体训练环境;根据保障作业流程,确定智能体及其观测空间与动作空间;随后设计奖励函数、经验抽取机制和终止条件,并基于此设计网络结构;通过设置主要参数初始化环境,并采用多智能体深度确定策略梯度算法(Multi Agent Deep Deterministic Policy Gradient,MADDPG)训练智能体;最终使用完成训练智能体的决策辅助指挥人员进行保障作业人员调度。本发明可用于人员调度智能决策,将各类保障小组设定为智能体,辅助指挥人员和保障人员进行决策,提高保障作业决策效率,从而提高舰载机出动回收架次率。

    一种船用减摇鳍的鳍体实时自动避障方法

    公开(公告)号:CN112429165A

    公开(公告)日:2021-03-02

    申请号:CN202011283962.4

    申请日:2020-11-17

    摘要: 本发明涉及一种船用减摇鳍的鳍体实时自动避障方法,该方法将减摇鳍的鳍体等效成长方体模型,其中障碍物的等效球模型是将障碍物看成一个质点,质点与鳍体的安全距离作为半径,标记处于鳍体中的轴中心点、长方体模型右侧面中心点与这两点在后侧面所在平面的投影点,通过测距传感器分别测出障碍物与其余四点的距离,再测出两个中心点的距离和长方体模型的宽,若障碍物将与鳍发生碰撞,则需要在降低一定减摇效果的情况下改变鳍摆角实现避障,由折算关系可知所需改变的角度。本发明优点是方法简单、操作方便、实用性强,并且避免了鳍在遇到暗礁、较大悬浮物或特殊情况时发生碰撞的不利情况,解决了传统减摇鳍的鳍体缺乏实时自动避障的问题。

    一种主动控制恒张力的三连杆式船用自抓放机械臂装置

    公开(公告)号:CN112276958A

    公开(公告)日:2021-01-29

    申请号:CN202011243396.4

    申请日:2020-11-10

    摘要: 本发明设计一种主动控制恒张力的三连杆式船用自抓放机械臂装置。装置主要包括底座、平衡平台、左平衡臂、右平衡臂、张力传感器、连杆一、连杆二、连杆三、左辅助平衡臂、右辅助平衡臂、主吊索、左平衡索、右平衡索、左辅助平衡索、右辅助平衡索、视觉传感器、吊环、抓钩、PLC控制箱。采用四条平衡索,利用PLC实现主动控制恒张力,并采用视觉传感器的抓钩实现自动抓取收放功能。本发明优点在于使用多个自由度的三连杆式机械臂,扩大抓取范围。同时考虑海洋环境因素干扰力对主吊索、抓钩和被吊物影响。采用四条平衡索,提升减摇效果。运用视觉传感器,船用机械臂可以自动抓取收放被吊物,且相比于人工操作的船用起重机更加智能化,适用于多种运载器。

    基于深度强化学习的舰载机保障作业人员调度方法

    公开(公告)号:CN113706023B

    公开(公告)日:2022-07-12

    申请号:CN202111009089.4

    申请日:2021-08-31

    摘要: 本发明公开了一种基于深度强化学习的舰载机保障作业人员调度方法,包括以下步骤:构建舰载机保障过程的马尔可夫决策过程(Markov Decision Process,MDP)模型,作为智能体训练环境;根据保障作业流程,确定智能体及其观测空间与动作空间;随后设计奖励函数、经验抽取机制和终止条件,并基于此设计网络结构;通过设置主要参数初始化环境,并采用多智能体深度确定策略梯度算法(Multi Agent Deep Deterministic Policy Gradient,MADDPG)训练智能体;最终使用完成训练智能体的决策辅助指挥人员进行保障作业人员调度。本发明可用于人员调度智能决策,将各类保障小组设定为智能体,辅助指挥人员和保障人员进行决策,提高保障作业决策效率,从而提高舰载机出动回收架次率。

    一种动态变采样区域RRT无人车路径规划方法

    公开(公告)号:CN113359775B

    公开(公告)日:2022-01-18

    申请号:CN202110774053.9

    申请日:2021-07-08

    IPC分类号: G05D1/02

    摘要: 本发明涉及一种基于动态变采样区域的概率目标偏置快速扩展随机树(RRT)无人车路径规划方法。所述方法包括:首先,初始化地图信息,根据动态变采样区域公式判断所处区域;在此基础上进行预留安全距离的碰撞检测,并根据概率目标偏置公式和步长选择公式生成新生节点,重复上述步骤直到满足新生节点和目标节点之间的距离小于距离阈值,反向搜索,输出路径;最后,考虑最大转角约束对输出路径进行逆向寻优和3次B样条曲线拟合优化,仿真验证了所述方法的有效性。本发明能够降低节点搜索的盲目性和随机性,减少路径搜索的时间,且规划的路径平滑符合车辆运动动力学约束。