基于变长基因遗传算法的神经网络构建系统、方法及存储介质

    公开(公告)号:CN112819161A

    公开(公告)日:2021-05-18

    申请号:CN202110140849.9

    申请日:2021-02-02

    申请人: 四川大学

    IPC分类号: G06N3/12

    摘要: 本发明公开了一种基于变长基因遗传算法的神经网络构建系统及其方法,其中,构建系统包括依次连接的训练集生成模块、网络初始化模块、网络训练模块、网络更新模块、网络优化模块、网络选择模块、迭代次数更新模块和网络生成模块。本方案的构建方法大体思路为在初始化步骤中生成变长的染色体,并在每个染色体的特定基因上随机添加BN组件。通过在训练集上,训练得到每个染色体对应解码的神经网络结构表现,选择子代染色体。随后,在交叉步骤中,不固定交叉染色体的长度,利用增长和收缩策略以生成子代染色体。之后利用传统的变异和环境选择操作完成子代染色体选择,重复以上,将得到的最佳染色体解码为对应的神经网络架构。

    变长基因遗传算法的神经网络构建系统、方法及存储介质

    公开(公告)号:CN112819161B

    公开(公告)日:2021-08-31

    申请号:CN202110140849.9

    申请日:2021-02-02

    申请人: 四川大学

    IPC分类号: G06N3/12

    摘要: 本发明公开了一种基于变长基因遗传算法的神经网络构建系统及其方法,其中,构建系统包括依次连接的训练集生成模块、网络初始化模块、网络训练模块、网络更新模块、网络优化模块、网络选择模块、迭代次数更新模块和网络生成模块。本方案的构建方法大体思路为在初始化步骤中生成变长的染色体,并在每个染色体的特定基因上随机添加BN组件。通过在训练集上,训练得到每个染色体对应解码的神经网络结构表现,选择子代染色体。随后,在交叉步骤中,不固定交叉染色体的长度,利用增长和收缩策略以生成子代染色体。之后利用传统的变异和环境选择操作完成子代染色体选择,重复以上,将得到的最佳染色体解码为对应的神经网络架构。