-
公开(公告)号:CN115310472A
公开(公告)日:2022-11-08
申请号:CN202110492704.5
申请日:2021-05-07
申请人: 四川轻化工大学
摘要: 本发明公开了一种能够确保识别核素准确性、提高核素识别速度的基于核脉冲峰值序列数据的一维卷积神经网络核素识别方法。该基于核脉冲峰值序列数据的一维卷积神经网络核素识别方法首先通过探测器实际测量核脉冲信号,使用离散小波变换进行滤波,随后提取脉冲的幅值与幅值点对应的时间,组成序列数据;将获得的序列数据进行最大最小归一化操作,然后再划分数据集为训练集和测试集;使用TensorFlow搭建一维卷积神经网络,使用训练集训练神经网络模型,然后在使用测试集进行测试,优化模型参数。采用该基于核脉冲峰值序列数据的一维卷积神经网络核素识别方法能够快速、高精度实现核素识别。