一种基于多模型集成的海面高预报方法

    公开(公告)号:CN112884217B

    公开(公告)日:2022-03-15

    申请号:CN202110157174.9

    申请日:2021-02-04

    Abstract: 一种基于多模型集成的海面高预报方法,步骤包括,S1:收集多源卫星融合资料,提取表层海洋环境多要素数据集;S2:对多要素数据集进行预处理和数据集划分,划分成训练集、测试集和验证集;S3:构建基于卷积递归神经网络的海面高多要素直接预报模型,得出海面高网格化预报时空序列;S4:基于海面高网格化预报结果和多要素数据集,通过构建好的海面高定点预报深度学习模型,得到海面高定点预报时间序列;S5:基于海面高网格化预报时空序列和海面高定点预报时间序列,得出订正后的海面高网格化分布;本发明将多源卫星观测资料构造成多要素数据集,以参与海面高网格化预报和海面高定点预报,使本发明获得更高的预报准确率和更长的预报时效。

    一种基于多模型集成的海面高预报方法

    公开(公告)号:CN112884217A

    公开(公告)日:2021-06-01

    申请号:CN202110157174.9

    申请日:2021-02-04

    Abstract: 一种基于多模型集成的海面高预报方法,步骤包括,S1:收集多源卫星融合资料,提取表层海洋环境多要素数据集;S2:对多要素数据集进行预处理和数据集划分,划分成训练集、测试集和验证集;S3:构建基于卷积递归神经网络的海面高多要素直接预报模型,得出海面高网格化预报时空序列;S4:基于海面高网格化预报结果和多要素数据集,通过构建好的海面高定点预报深度学习模型,得到海面高定点预报时间序列;S5:基于海面高网格化预报时空序列和海面高定点预报时间序列,得出订正后的海面高网格化分布;本发明将多源卫星观测资料构造成多要素数据集,以参与海面高网格化预报和海面高定点预报,使本发明获得更高的预报准确率和更长的预报时效。

Patent Agency Ranking