-
公开(公告)号:CN115188039A
公开(公告)日:2022-10-14
申请号:CN202210586229.2
申请日:2022-05-27
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于图像频域信息的深度伪造视频技术溯源方法,对输入深度伪造视频进行抽帧;将抽出的图像利用RetinaFace人脸检测模型检测人脸图像,并进行人脸对齐和缩放;将裁出的人脸图像利用离散余弦傅里叶变换,裁剪算法和离散余弦傅里叶反变换获得其对应的高频频域特征;将原始人脸RGB信息和高频频域信息进行特征融合,得到融合特征;采用Xception作为主干网络进一步提取融合特征,得到对应的分类特征实现深度伪造视频技术溯源结果。本发明提高了对不同伪造技术的分类能力,提高了溯源准确率。
-
公开(公告)号:CN115187891A
公开(公告)日:2022-10-14
申请号:CN202210585640.8
申请日:2022-05-27
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06V20/40 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/08
Abstract: 本发明涉及一种基于频域信息与多任务学习的深度伪造视频鉴别方法,使用频域分析中的离散余弦变换,结合分块处理的方式保留部分RGB三通道图像的空间信息,得到频域特征作为输入数据;使用多任务学习的深度神经网络提取输入数据的特征,将Xception网络作为骨干网络模块,并设计基于反卷积运算的分割模块与基于特征融合的分类模块,将骨干网络模块与分割模块提取的特征融合;同时设计优化训练引导目标算法,将融合后的特征间关系转化为三维条件下的几何距离,通过优化训练引导目标算法完成多任务学习的深度神经网络模型的训练,得到深度伪造视频鉴别模型,完成深度伪造视频的鉴别。
-