基于Matlab/Simulink的风光互补分布式电源系统

    公开(公告)号:CN113364028A

    公开(公告)日:2021-09-07

    申请号:CN202110566029.6

    申请日:2021-05-24

    IPC分类号: H02J3/38 H02J3/46

    摘要: 本发明提供了一种基于Matlab/Simulink的风光互补分布式电源系统。该系统包括风力发电模块、光伏发电模块、电路整合模块、电路控制模块和电能输出模块。风力发电模块和光伏发电模块分别与电路整合模块电连接,然后将产生的电能通过电路整合模块输送至电能输出模块;电能输出模块将电能分类分配至用电设备;电路控制模块用于对电路整合模块的电压和频率进行调控。该模型对于模拟连接到电网的混合风光发电系统有重要意义,实现了风力发电模型、光伏发电模型的互补以及能量转换和负荷输出的确定,并给出了仿真结果。

    干法电极片的制备方法
    2.
    发明公开

    公开(公告)号:CN117727855A

    公开(公告)日:2024-03-19

    申请号:CN202311772865.5

    申请日:2023-12-21

    IPC分类号: H01M4/04 H01M4/139

    摘要: 本发明提供了一种干法电极片的制备方法。该方法通过先将聚四氟乙烯和聚丙烯腈混匀后,加入电极活性材料和导电剂混匀得到混合物;再将得到的混合物依次进行原纤化处理、热辊压成膜、辊压减薄、热压复合处理后,得到干法电极片。制备的干法电极片不仅具有良好的机械性能和粘弹性,而且还能提升干法电极片在电解液中的浸润性和锂离子的通量。

    三维复合集流体及其制备方法

    公开(公告)号:CN112670516B

    公开(公告)日:2023-11-14

    申请号:CN201911120217.5

    申请日:2019-11-15

    IPC分类号: H01M4/66 H01M10/0525

    摘要: 本发明提供了一种三维复合集流体及其制备方法。本发明提供的三维复合集流体包括铜箔基层和涂覆于所述铜箔基层上的锂电池负极亲锂材料涂层;所述锂电池负极亲锂材料涂层包含若干微米尺寸的三维球形结构。所述锂电池负极亲锂材料由碳材料、亲锂金属氧化物、粘结剂、锂盐组成。本发明首先制备得到锂电池负极亲锂材料浆料,然后将浆料涂布于铜箔基层上,形成锂电池负极亲锂材料涂层,制备得到锂电池负极三维复合集流体。所述锂电池负极亲锂材料在铜箔上涂布形成了微米尺寸三维球形结构的复合涂层,可以有效降低锂金属负极的电流密度,进而有效缓解并减少锂枝晶的产生,提升锂金属电池的循环性能及安全性能。

    偏磷酸锂原位包覆的三元正极材料及其制备方法和应用

    公开(公告)号:CN113725410B

    公开(公告)日:2023-07-04

    申请号:CN202110905506.7

    申请日:2021-08-05

    摘要: 本发明提供了一种偏磷酸锂原位包覆的三元正极材料及其制备方法和应用。该制备方法为:S1,按预定比例将磷酸二氢铵、碳酸锂和乙醇充分混合,加热溶解后再加入预定量的三元正极材料,分散均匀得到混合料;而后烘干处并两次联合煅烧处理,得到煅烧产物;S2,将所述煅烧产物加入到PVDF溶液中,分散8~18h;再加入导电炭黑,继续分散8~18h,得到混合浆料;S3,将所述混合浆料涂布在铝箔上,涂布后依次进行鼓风干燥和真空干燥两步干燥处理,制备得到偏磷酸锂原位包覆的三元正极材料。本发明通过原位包覆偏磷酸锂能有效提高三元正极的界面稳定性,抑制界面副反应的发生;解决了偏磷酸锂由于不溶解带来的包覆不均的问题,且该方法操作比较简单,适合产业化的应用。

    一体化工作平台大规模制备柔性薄膜电极的方法

    公开(公告)号:CN112670434B

    公开(公告)日:2022-11-25

    申请号:CN201911124781.4

    申请日:2019-11-15

    IPC分类号: H01M4/04 H01M4/139

    摘要: 本发明提供了一体化工作平台大规模制备柔性薄膜电极的方法,首先称取预定质量比例的活性物质、导电剂、粘结剂,加入预定溶剂中,通过球磨或磁力搅拌,配制成预定固含量的电极浆料;然后将所述电极浆料注入到一体化工作平台中,进行涂布、分段控温干燥、剥离收卷,实现柔性薄膜电极的大规模连续制备。本发明提供的方法实现了利用涂布法进行大规模制备无需集流体就能满足独立自支撑的柔性薄膜电极,制备过程一体化完成,且制备方法简单。本发明制备的柔性薄膜电极既具备良好的柔性,可反复对折,也消除了传统通过集流体负载活性物质制备电极的方法所带来的不可避免的掉粉现象产生,且电化学性能优异,具有巨大的应用前景,适合大规模工业生产。

    锂离子电池热失控分级预警方法及预警系统

    公开(公告)号:CN113344024B

    公开(公告)日:2022-04-12

    申请号:CN202110435874.X

    申请日:2021-04-22

    摘要: 本发明提供了一种锂离子电池热失控分级预警方法及预警系统。该方法采用无故障的电池特征要素对长短期记忆网络、时间卷积网络和GRU神经网络构成的预测模型的热失控预测能力进行训练;接着将待监控电池在时间序列上的电池特征要素输入至预测模型,得到某一时刻的正常状态下的预测值,然后与采集到的该时刻对应的真实值比较,两者相差越大表明电池热失控风险越大。如此操作,既综合了各自的优势,又避免了各自模型训练出来的系数偏差过大问题,从而实现高精度的电池热失控分级检测,提高锂离子电池热失控预警的速度和精度。

    绝缘防腐灭火剂及其制备方法

    公开(公告)号:CN113209537B

    公开(公告)日:2022-03-01

    申请号:CN202110402100.7

    申请日:2021-04-14

    IPC分类号: A62D1/00 H01M10/42

    摘要: 本发明提供了一种新型绝缘防腐灭火剂及其制备方法。该新型绝缘防腐灭火剂包括Novec 1230灭火剂、1,1,2,2,3,3,4‑七氟环戊烷和金属有机框架N2H‑MIL‑125(Ti)。选用七氟环戊烷作为冷却能力强的冷却剂,可以保证锂离子电池火灾的快速扑灭,达到冷却效果,防止锂离子电池再次燃烧。通过具有两种孔结构的N2H‑MIL‑125(Ti)吸附作用,能够有效吸附灭火剂中的水和HF,从而显著提高灭火剂的抗腐蚀能力。本发明提供的新型绝缘防腐灭火剂具有优异的灭火能力和防腐效果,有望解决锂离子电池大规模使用中的消防安全问题。

    一种高效灭火剂及消防安全灭火工艺

    公开(公告)号:CN113181589B

    公开(公告)日:2022-02-08

    申请号:CN202110302290.5

    申请日:2021-03-22

    IPC分类号: A62D1/00 A62C3/16

    摘要: 本发明提供了一种高效灭火剂及消防安全灭火工艺。本发明通过制备三聚氰胺脲醛树脂预聚物,并将其与蒙脱土、消泡剂以及作为灭火材料的全氟己酮和七氟环戊烷混合,制备了以三聚氰胺脲醛树脂为壳材,以全氟己酮和七氟环戊烷为芯材的核壳结构高效灭火剂;并通过将制备的高效灭火剂负载于锂离子电池的外表面,为锂离子电池提供了有效的安全防护,保障了锂离子电池的消防安全。通过上述方式,本发明提供的灭火工艺能够在锂离子电池热失控时使高效灭火剂破裂,释放灭火材料,及时起到阻燃和灭火的双重作用,并在兼顾降温能力的同时保证灭火效果,使锂离子电池火灾能够快速扑灭并冷却,有效防止锂离子电池复燃,以保障锂离子电池的使用安全。

    一种金属空气电池空气电极及其制备方法

    公开(公告)号:CN111180749B

    公开(公告)日:2021-08-17

    申请号:CN202010004690.3

    申请日:2020-01-03

    摘要: 本发明提供了一种金属空气电池空气电极及其制备方法。将金属有机骨架材料与氮源小分子混合,使氮源小分子吸附在金属有机骨架内;然后在氮气氛围下进行高温碳化处理,最后进行酸处理去除金属粒子,得到氮掺杂多孔碳材料;将多孔碳材料配成浆料,涂覆于导电基底表面,即得到金属空气电池空气电极。本发明制得的氮掺杂多孔碳具有高比表面积和高氮含量及优异的氧还原催化活性,在配成的浆料中加入PVDF粘结剂以保证催化剂与基底的连接,通过PTFE薄膜,抵抗电解液对催化剂的冲刷,从而维持电极的稳定。本发明提供的制备方法简单可行、重复性好,便于大规模生产,可用于空气电池领域,尤其是锂空气电池的空气电极。

    固态电解质、锂金属负极及其制备方法

    公开(公告)号:CN112117488B

    公开(公告)日:2021-11-02

    申请号:CN202010760017.2

    申请日:2020-07-31

    IPC分类号: H01M10/0565 H01M10/0525

    摘要: 本发明提供了一种固态电解质、锂金属负极及其制备方法。所述固态电解质为由锂镧钛氧和线性聚氨酯复合而成的复合聚合物电解质。该制备方法为:首先,通过水热合成和高温煅烧相结合的工艺制备出具有完全结晶相的锂镧钛氧颗粒;然后,将锂镧钛氧颗粒与线性聚氨酯共混搅拌,进行溶剂蒸发处理,制备得到固态电解质。本发明制备的固态电解质在室温下的锂离子电导率达到3.8×10‑4S cm‑1。同时,用该固态电解质组装后的电池在室温下表现出出色的循环性能和优异比容量。本发明将该固态电解质和锂金属片复合即可得到锂金属负极。