-
公开(公告)号:CN115549082B
公开(公告)日:2025-02-07
申请号:CN202211316020.0
申请日:2022-10-26
Applicant: 国网吉林省电力有限公司经济技术研究院
IPC: H02J3/00 , G06Q10/04 , G06N3/0442 , G06N3/08 , G06F18/214
Abstract: 本发明公开了基于负荷挖掘和LSTM神经网络的电力负荷预测方法,包括:对获取的历史负荷数据集分为测试集和训练集;构建一新矩阵,采用改进FCM的聚类方法进行聚类,构建出K*个子集;分别构建K*个基于改进LSTM的负荷预测器;并搭建改进的周期增强LSTM神经网络模型;并对所述改进的周期增强LSTM神经网络进行训练;通过训练的所述周期增强LSTM神经网络模型、根据待测日前一天的负荷曲线以及待测日的气象数据以及确定的预测期得到预测值。本发明针对电力负荷数据的复杂特性,本发明建立了一种结合聚类和深度学习的电力负荷预测模型,提出周期性增强LSTM神经网络,利用前一天信息实现了对后一天负荷的准确预测。
-
公开(公告)号:CN115549082A
公开(公告)日:2022-12-30
申请号:CN202211316020.0
申请日:2022-10-26
Applicant: 国网吉林省电力有限公司经济技术研究院
Abstract: 本发明公开了基于负荷挖掘和LSTM神经网络的电力负荷预测方法,包括:对获取的历史负荷数据集分为测试集和训练集;构建一新矩阵,采用改进FCM的聚类方法进行聚类,构建出K*个子集;分别构建K*个基于改进LSTM的负荷预测器;并搭建改进的周期增强LSTM神经网络模型;并对所述改进的周期增强LSTM神经网络进行训练;通过训练的所述周期增强LSTM神经网络模型、根据待测日前一天的负荷曲线以及待测日的气象数据以及确定的预测期得到预测值。本发明针对电力负荷数据的复杂特性,本发明建立了一种结合聚类和深度学习的电力负荷预测模型,提出周期性增强LSTM神经网络,利用前一天信息实现了对后一天负荷的准确预测。
-