-
公开(公告)号:CN106486974A
公开(公告)日:2017-03-08
申请号:CN201510558028.1
申请日:2015-09-02
IPC分类号: H02H7/122
摘要: 本发明涉及一种基于IGBT退饱和保护的模块化多电平换流器过电流保护方法,所述方法包括:设置模块化多电平换流器过电流保护开关的故障检测时间间隔Δt;设置相单元中发生IGBT退饱和保护的子模块数量阈值Nlim;检测A相上、下两个桥臂中发生IGBT退饱和保护的子模块数量Ndesaturated,A1和Ndesaturated,A2;计算A相发生IGBT退饱和保护的总数量Ndesaturated,Asum=Ndesaturated,A1+Ndesaturated,A2;对B、C两相同样计算Ndesaturated,Bsum和Ndesaturated,Csum;判断:如果(Ndesaturated,Asum-Nlim)||(Ndesaturated,Bsum-Nlim)||(Ndesaturated,Csum-Nlim)>0,则发生过电流故障;当判断模块化多电平换流器发生过电流故障,触发过电流保护,换流器闭锁跳闸。本发明提供的技术方案采用上报IGBT退饱和保护的子模块数量,对通讯测量消抖要求低、故障连判次数更少,从故障电流检测至换流阀闭锁跳闸的时间可缩减至1ms以内。
-
公开(公告)号:CN106936151B
公开(公告)日:2021-06-25
申请号:CN201511025221.5
申请日:2015-12-30
申请人: 国网辽宁省电力有限公司电力科学研究院 , 国网智能电网研究院 , 国家电网公司
IPC分类号: H02J3/36
摘要: 本发明涉及一种柔性直流输电系统运行区间确定方法,所述柔性直流输电系统包括位于直流线路两端的两个换流器,其中一个换流器运行于整流状态,另一个换流器运行于逆变状态;确定方法综合考虑了工程容量需求、各设备损耗、交流系统强弱、交流系统电压波动、调制方法、子模块电压波动等多种因素对换流器运行区间的影响,给出了确定换流器运行区间的方法,从而指导换流器容量的确定。该方法能够兼顾技术要求和经济性要求,为柔性直流输电工程设备参数设计提供依据,为后期工程运行提供指导。
-
公开(公告)号:CN106936141A
公开(公告)日:2017-07-07
申请号:CN201511023217.5
申请日:2015-12-30
申请人: 国网辽宁省电力有限公司电力科学研究院 , 国网智能电网研究院 , 国家电网公司
摘要: 本发明涉及一种柔性环网控制器的有功功率控制方法及其控制系统,包括:定有功功率侧换流站成有功电流参考值定有功功率侧换流站的有功电流参考值由通讯光纤传输到对侧换流站,即定直流电压侧换流站;定直流电压侧换流站生成直流电压的参考信号Udcref;利用站间通讯,定直流电压侧换流站的直流电压控制器接收有功电流参考值经引入附加信号的外环直流电压控制器生成定直流电压侧换流站的正序d轴电流参考值本发明提供的技术方案利用站间通讯,在定直流电压侧换流站的直流电压控制器中引入定有功功率换流站生成的有功电流参考值作为附加信号,通过两端换流站的协调控制,实现对柔性环网控制器传输有功功率的快速调节。
-
公开(公告)号:CN106936140A
公开(公告)日:2017-07-07
申请号:CN201511020060.0
申请日:2015-12-30
申请人: 国网辽宁省电力有限公司电力科学研究院 , 国网智能电网研究院 , 国家电网公司
IPC分类号: H02J3/18
摘要: 本发明涉及基于柔性直流与高压并联电容配合的无功调节装置及方法,多组高压并联电容器组与柔性直流输电系统连接于同一交流母线上,调度中心根据交流母线实际电压水平U、换流站实际无功功率输出Q0与标准电压进行比较并计算无功补偿容量Q;判定无功补偿容量Q是否大于单组高压并联电容组的最大无功补偿容量Qm,若小于,则全部无功功率由柔性直流换流站提供单组并联电容器的容量Qset,否则,剩余所需的无功补偿容量Qvsc2由柔性直流换流站提供。投切动作进行时,柔性直流换流站投入自身全部无功补偿容量,之后随着并联电容组的投入逐渐降低自身无功出力至Q‑(a×Qset),显著降低电容器过电压水平并降低设备的有功损耗。
-
公开(公告)号:CN106936141B
公开(公告)日:2020-10-13
申请号:CN201511023217.5
申请日:2015-12-30
申请人: 国网辽宁省电力有限公司电力科学研究院 , 国网智能电网研究院 , 国家电网公司
摘要: 本发明涉及一种柔性环网控制器的有功功率控制方法及其控制系统,包括:定有功功率侧换流站成有功电流参考值定有功功率侧换流站的有功电流参考值由通讯光纤传输到对侧换流站,即定直流电压侧换流站;定直流电压侧换流站生成直流电压的参考信号Udcref;利用站间通讯,定直流电压侧换流站的直流电压控制器接收有功电流参考值经引入附加信号的外环直流电压控制器生成定直流电压侧换流站的正序d轴电流参考值本发明提供的技术方案利用站间通讯,在定直流电压侧换流站的直流电压控制器中引入定有功功率换流站生成的有功电流参考值作为附加信号,通过两端换流站的协调控制,实现对柔性环网控制器传输有功功率的快速调节。
-
公开(公告)号:CN106911131B
公开(公告)日:2020-08-18
申请号:CN201510968831.2
申请日:2015-12-22
申请人: 国网智能电网研究院 , 国网辽宁省电力有限公司电力科学研究院 , 国家电网公司
IPC分类号: H02J3/06
摘要: 本发明涉及一种交流电网分区互联装置的紧急功率支援控制方法,包括:设定分区互联装置的正常运行控制策略;即根据正常运行时的分区互联装置的潮流,将与其送端联接的一个换流器划分为I类控制器,将其余所有的换流器划分为II类控制器;设定分区互联装置的紧急功率控制的控制值;检测交流电网电压频率f,设定II类控制器的有功控制法;检测交流电网电压幅值uac,设定II类控制器的无功控制法。本发明技术方案实现无站间通信条件下的紧急功率支援,克服现有控制策略无法及时有效响应紧急功率支援要求的技术问题。
-
公开(公告)号:CN106936140B
公开(公告)日:2020-08-04
申请号:CN201511020060.0
申请日:2015-12-30
申请人: 国网辽宁省电力有限公司电力科学研究院 , 国网智能电网研究院 , 国家电网公司
IPC分类号: H02J3/18
摘要: 本发明涉及基于柔性直流与高压并联电容配合的无功调节装置及方法,多组高压并联电容器组与柔性直流输电系统连接于同一交流母线上,调度中心根据交流母线实际电压水平U、换流站实际无功功率输出Q0与标准电压进行比较并计算无功补偿容量Q;判定无功补偿容量Q是否大于单组高压并联电容组的最大无功补偿容量Qm,若小于,则全部无功功率由柔性直流换流站提供单组并联电容器的容量Qset,否则,剩余所需的无功补偿容量Qvsc2由柔性直流换流站提供。投切动作进行时,柔性直流换流站投入自身全部无功补偿容量,之后随着并联电容组的投入逐渐降低自身无功出力至Q‑(a×Qset),显著降低电容器过电压水平并降低设备的有功损耗。
-
公开(公告)号:CN106936151A
公开(公告)日:2017-07-07
申请号:CN201511025221.5
申请日:2015-12-30
申请人: 国网辽宁省电力有限公司电力科学研究院 , 国网智能电网研究院 , 国家电网公司
IPC分类号: H02J3/36
CPC分类号: H02J3/36
摘要: 本发明涉及一种柔性直流输电系统运行区间确定方法,所述柔性直流输电系统包括位于直流线路两端的两个换流器,其中一个换流器运行于整流状态,另一个换流器运行于逆变状态;确定方法综合考虑了工程容量需求、各设备损耗、交流系统强弱、交流系统电压波动、调制方法、子模块电压波动等多种因素对换流器运行区间的影响,给出了确定换流器运行区间的方法,从而指导换流器容量的确定。该方法能够兼顾技术要求和经济性要求,为柔性直流输电工程设备参数设计提供依据,为后期工程运行提供指导。
-
公开(公告)号:CN106911131A
公开(公告)日:2017-06-30
申请号:CN201510968831.2
申请日:2015-12-22
申请人: 国网智能电网研究院 , 国网辽宁省电力有限公司电力科学研究院 , 国家电网公司
IPC分类号: H02J3/06
摘要: 本发明涉及一种交流电网分区互联装置的紧急功率支援控制方法,包括:设定分区互联装置的正常运行控制策略;即根据正常运行时的分区互联装置的潮流,将与其送端联接的一个换流器划分为I类控制器,将其余所有的换流器划分为II类控制器;设定分区互联装置的紧急功率控制的控制值;检测交流电网电压频率f,设定II类控制器的有功控制法;检测交流电网电压幅值uac,设定II类控制器的无功控制法。本发明技术方案实现无站间通信条件下的紧急功率支援,克服现有控制策略无法及时有效响应紧急功率支援要求的技术问题。
-
公开(公告)号:CN105576688A
公开(公告)日:2016-05-11
申请号:CN201511007821.9
申请日:2015-12-28
申请人: 国网辽宁省电力有限公司电力科学研究院 , 国网智能电网研究院 , 国家电网公司
摘要: 本发明提供了一种柔性直流输电系统的控制保护方法,通过交流电压检测和交流频率检测相结合的方法判断交流系统的运行状态,确定柔性直流系统配合交流系统动作的运行方式。本发明将控制保护方法分为高压输电系统控制保护方法和中低压输电系统控制保护方法,该方法可以适用于目前所有的交流系统;大幅降低了控制保护系统配合时间,提高了系统供电可靠性;最大限度了确保了柔性直流输电系统的利用率。
-
-
-
-
-
-
-
-
-