-
公开(公告)号:CN111985623A
公开(公告)日:2020-11-24
申请号:CN202010882758.8
申请日:2020-08-28
Applicant: 复旦大学
IPC: G06N3/04 , G06N3/08 , G06K9/62 , G06F16/906
Abstract: 本发明提供了基于最大化互信息和图神经网络的属性图群组发现方法,其特征在于,包括步骤:利用预先训练好的图神经网络对待处理矩阵进行表征学习得到初步节点表征,并对待处理属性图进行互信息计算得到全局互信息值;利用软聚类将初步节点表征划分到多个群组的中心得到分配矩阵;根据分配矩阵对原始群组进行模块度以及待处理属性图内的互信息计算得到模块度值以及群组互信息;根据模块度值、群组互信息以及全局互信息值计算总损失,并根据该总损失通过梯度回传对图神经网络进行迭代更新直到得到群组发现结果。本方法可以实现端到端的更新图神经网络不需要分步实现,并且能更好地捕捉节点属性关系,得到准确性更高的群组发现结果。