一种小样本字符与手绘草图识别方法及装置

    公开(公告)号:CN113111803B

    公开(公告)日:2022-03-22

    申请号:CN202110422541.3

    申请日:2021-04-20

    申请人: 复旦大学

    发明人: 付彦伟 韩文慧

    摘要: 本发明提供了一种小样本字符与手绘草图识别方法及装置,其特征在于,包括如下步骤:按照固定抹除比例抹除点序列格式的无标注源数据得到增广网络预训练数据;搭建基于高斯混合模型的BERT增广网络,基于增广网络预训练数据与点序列格式的无标注源数据训练得到增广器;按照各个随机抹除比例抹除点序列格式的有标注小样本数据得到抹除后小样本数据;采用增广器对抹除后小样本数据状态与坐标分别预测从而得到预测点,与抹除后小样本数据整合,并利用神经渲染器转换得到位图格式增广数据;基于位图格式的增广数据以及位图格式的有标注小样本数据训练卷积神经网络分类器,得到小样本字符与手绘草图识别模型,从而对待识别图像进行识别得到分类结果。

    一种小样本字符与手绘草图识别方法及装置

    公开(公告)号:CN113111803A

    公开(公告)日:2021-07-13

    申请号:CN202110422541.3

    申请日:2021-04-20

    申请人: 复旦大学

    发明人: 付彦伟 韩文慧

    摘要: 本发明提供了一种小样本字符与手绘草图识别方法及装置,其特征在于,包括如下步骤:按照固定抹除比例抹除点序列格式的无标注源数据得到增广网络预训练数据;搭建基于高斯混合模型的BERT增广网络,基于增广网络预训练数据与点序列格式的无标注源数据训练得到增广器;按照各个随机抹除比例抹除点序列格式的有标注小样本数据得到抹除后小样本数据;采用增广器对抹除后小样本数据状态与坐标分别预测从而得到预测点,与抹除后小样本数据整合,并利用神经渲染器转换得到位图格式增广数据;基于位图格式的增广数据以及位图格式的有标注小样本数据训练卷积神经网络分类器,得到小样本字符与手绘草图识别模型,从而对待识别图像进行识别得到分类结果。

    一种用于小样本甲骨文识别的数据增广方法、应用及装置

    公开(公告)号:CN114708473A

    公开(公告)日:2022-07-05

    申请号:CN202011492114.4

    申请日:2020-12-17

    申请人: 复旦大学

    摘要: 本发明提供了一种用于小样本甲骨文识别的数据增广方法、应用及装置,其特征在于,包括如下步骤:对大样本数据、小样本数据序列化得到序列化大样本数据、序列化小样本数据;对序列化大样本数据抹除得到抹除大样本数据、完整大样本数据,对抹除大样本数据编码得到编码后抹除大样本数据;将编码后抹除大样本数据输入特征提取网络得到深度特征;利用预测网络对抹除大样本数据预测得到预测大样本数据;训练更新深度学习网络得到增广器;对序列化小样本数据随机抹除得到抹除小样本数据,并对抹除小样本数据编码得到编码后抹除小样本数据;将编码后抹除小样本数据输入增广器预测得到预测小样本数据,将该预测小样本数据作为增广样本。