一种基于特征信息的三阶段短期风电场群功率预测方法

    公开(公告)号:CN111525552A

    公开(公告)日:2020-08-11

    申请号:CN202010319994.9

    申请日:2020-04-22

    Abstract: 本发明涉及一种基于特征信息的三阶段短期风电场群功率预测方法。包括:特征点识别和预测,根据历史数据寻求能反映区域风电功率变化趋势的特征点,采用Elman神经网络预测模型,以各子区域的气象数据和区域历史风电功率数据作为模型的输入,以特征点风电场群功率作为输出对特征点功率进行预测;采用模糊匹配法生成风电功率曲线,根据上阶段预测得到的最优特征点,寻求历史上相似度最高的功率曲线为基准风电功率曲线,并把该曲线上的各点同倍比放大或缩小,得风电场群功率曲线;采用非参数回归技术,根据实际与预测风电功率偏差,建立误差分布函数,计算给定置信水平下的风电功率置信区间,得到风电场群功率区间预测范围。

    一种基于特征信息的三阶段短期风电场群功率预测方法

    公开(公告)号:CN111525552B

    公开(公告)日:2023-06-09

    申请号:CN202010319994.9

    申请日:2020-04-22

    Abstract: 本发明涉及一种基于特征信息的三阶段短期风电场群功率预测方法。包括:特征点识别和预测,根据历史数据寻求能反映区域风电功率变化趋势的特征点,采用Elman神经网络预测模型,以各子区域的气象数据和区域历史风电功率数据作为模型的输入,以特征点风电场群功率作为输出对特征点功率进行预测;采用模糊匹配法生成风电功率曲线,根据上阶段预测得到的最优特征点,寻求历史上相似度最高的功率曲线为基准风电功率曲线,并把该曲线上的各点同倍比放大或缩小,得风电场群功率曲线;采用非参数回归技术,根据实际与预测风电功率偏差,建立误差分布函数,计算给定置信水平下的风电功率置信区间,得到风电场群功率区间预测范围。

Patent Agency Ranking