一种用于静电纺丝的低弧度液面多射流喷头及纺丝模组

    公开(公告)号:CN118932505A

    公开(公告)日:2024-11-12

    申请号:CN202411182142.4

    申请日:2024-08-27

    申请人: 东华大学

    IPC分类号: D01D5/00

    摘要: 本发明涉及一种用于静电纺丝的低弧度液面多射流喷头及纺丝模组,包括:多射流单喷头、超细纤维用喷丝板及两侧的厚度补偿喷丝板;多射流单喷头内部设有哑铃状流道,哑铃状流道的上端设有悬臂杆,悬臂杆中间连接有电场强化均匀模块,哑铃状流道中间的截面收缩并设有内绝缘层,整个哑铃状流道外部包裹有外绝缘管,溶液在哑铃状流道内部流动,哑铃状流道与高静电压加载装置连接;超细纤维用喷丝板进行左右往复运动,超细纤维用喷丝板的两端设有与超细纤维用喷丝板顶端平齐的绝缘板;超细纤维用喷丝板及厚度补偿喷丝板均设有喷头绝缘底座。与现有技术相比,本发明实现单喷头多射流,实现高静电压的稳定加载;实现高密度纺丝,提升静电纺丝产量。

    一种高固含量低粘度纺丝液稳定化装置及方法

    公开(公告)号:CN118932502A

    公开(公告)日:2024-11-12

    申请号:CN202411182154.7

    申请日:2024-08-27

    申请人: 东华大学

    摘要: 本发明涉及一种高固含量低粘度纺丝液稳定化装置及方法,装置包括纺丝液复配装置和剪切稳定化装置,纺丝液复配装置包括纺丝液复配罐体和设于纺丝液复配罐体上的:主进液口、中空搅拌杆、副进液口、出液口、设于所述搅拌杆上的搅拌桨、用于驱动所述搅拌桨的主电机,所述搅拌桨内设有枝叶状中空流道,所述主进液口设于所述中空搅拌杆的端部,所述枝叶状中空流道与中空搅拌杆连通;剪切稳定化装置包括与所述出液口连接的纺丝流道、设于所述纺丝流道中的剪切螺杆、用于驱动所述剪切螺杆的副电机、设于所述纺丝流道底部的喷头。与现有技术相比,本发明能够实现有机纺丝液、无机纺丝液的均匀稳定生产,以确保后续纺丝工艺的顺利进行。

    一种原位成型的短纤维水凝胶敷料的制备方法

    公开(公告)号:CN115845123B

    公开(公告)日:2024-08-27

    申请号:CN202211492541.1

    申请日:2022-11-25

    申请人: 东华大学

    摘要: 本发明涉及一种原位成型的短纤维水凝胶敷料的制备方法,将电纺短纤维、醛基化天然聚合物、甲基丙烯酰化天然聚合物、光引发剂以及溶剂混合,获得混合溶液,紫外光照射成型。本发明中电纺短纤维和水凝胶分子通过席夫碱反应交联,赋予了水凝胶敷料力学增强且加速凝胶化的作用,同时短纤维与水凝胶分子间的界面作用有利于其均匀分散。纤维与水凝胶分子间的动态席夫碱键协同甲基丙烯酰化天然聚合物紫外光引发自由基聚合形成双网络,以制备具有稳定结构的短纤维增强水凝胶。

    一种均匀稳定的陶瓷前驱体溶胶制备装置

    公开(公告)号:CN114768720B

    公开(公告)日:2024-06-28

    申请号:CN202210324133.9

    申请日:2022-03-29

    申请人: 东华大学

    摘要: 本发明涉及一种均匀稳定的陶瓷前驱体溶胶制备装置,包括双层反应釜、酸性介质储存组件、加压设备、冷凝管、高低温单元、抽吸单元、循环冷却组件,其中双层反应釜包括双层反应釜内层和双层反应釜外层,双层反应釜内层中设有超声单元、喷气板和搅拌单元;加压设备通过管路与所述双层反应釜内层连接,以此给予双层反应釜内层中可纺性陶瓷前驱体溶胶压力,促进可纺性陶瓷前驱体溶胶挤出;冷凝管通过管路与所述双层反应釜内层连接;与现有技术相比,本发明解决了当前的配胶装置搅拌不充分、原料之间混合不均匀、无法精确控制pH值,且无法连续化生产可纺性陶瓷前驱体溶胶的问题。

    一种驻极熔喷核/壳粗糙结构纤维基空气滤网及其制备方法

    公开(公告)号:CN118236768A

    公开(公告)日:2024-06-25

    申请号:CN202410518974.2

    申请日:2024-04-28

    申请人: 东华大学

    IPC分类号: B01D39/16

    摘要: 本发明提供了一种驻极熔喷核/壳粗糙结构纤维基空气滤网及其制备方法,包括驻极熔喷核/壳褶皱结构纤维基空气滤网和驻极熔喷核/壳纳米凸起结构纤维基空气滤网。属于熔喷非织造技术领域。在水驻极过程中,由于纤维网中纤维具有褶皱结构与纳米凸起结构,其粗糙度比表面光滑纤维高,从而增加了与水摩擦接触面积,使纤维网产生密度更高的表面电荷;由于纤维核层能掺杂更多的成核剂与驻极添加剂,促进纤维核层获得高结晶度,因此在热烘干过程中更多电荷进行深阱捕获,使得纤维网储存更多的电荷。此外,由于赋予粗糙结构的纤维网进行电晕驻极和水驻极后,有利于防止表面电荷逸散。