一种基于季节调整的业扩报装分析预测系统及方法

    公开(公告)号:CN105023066A

    公开(公告)日:2015-11-04

    申请号:CN201510467874.2

    申请日:2015-07-31

    申请人: 山东大学

    IPC分类号: G06Q10/04 G06Q50/06

    摘要: 本发明公开了一种基于季节调整的业扩报装分析预测系统及方法,包括:首先对客户电量进行季节调整,以剔除季节性波动对电量增长趋势的影响,寻求时间序列的内在规律,筛选出具有代表性的典型客户,通过主元分析法得到客户群新装容量的释放规律。其次对报装容量和售电量分别进行季节调整,采用灰色关联分析法找到其趋势循环项关联度最强的月份,完成售电量预测。本发明有益效果:考虑到典型客户用电量受到季节因素的影响,其季节性波动的复杂性会掩盖经济发展过程中的客观规律,使序列的预测变得复杂、困难,因此要将季节因素和其他随机因子从原序列中剔除,使所选择的典型客户能够真正意义上的代表客户群的电量变化情况。

    一种基于季节调整的业扩报装分析预测系统及方法

    公开(公告)号:CN105023066B

    公开(公告)日:2018-07-17

    申请号:CN201510467874.2

    申请日:2015-07-31

    申请人: 山东大学

    IPC分类号: G06Q10/04 G06Q50/06

    摘要: 本发明公开了一种基于季节调整的业扩报装分析预测系统及方法,包括:首先对客户电量进行季节调整,以剔除季节性波动对电量增长趋势的影响,寻求时间序列的内在规律,筛选出具有代表性的典型客户,通过主元分析法得到客户群新装容量的释放规律。其次对报装容量和售电量分别进行季节调整,采用灰色关联分析法找到其趋势循环项关联度最强的月份,完成售电量预测。本发明有益效果:考虑到典型客户用电量受到季节因素的影响,其季节性波动的复杂性会掩盖经济发展过程中的客观规律,使序列的预测变得复杂、困难,因此要将季节因素和其他随机因子从原序列中剔除,使所选择的典型客户能够真正意义上的代表客户群的电量变化情况。