一种基于Faster RCNN改进的芯片缺陷识别方法

    公开(公告)号:CN115049635A

    公开(公告)日:2022-09-13

    申请号:CN202210796619.2

    申请日:2022-07-06

    摘要: 本发明提供了一种基于Faster RCNN改进的芯片缺陷检测方法,涉及工业目标检测领域,该方法包括:对数据集进行预处理,采集训练样本集,把样本集导入Faster RCNN,通过特征提取网络对图像样本集进行特征提取,将提取到的特征输入到RPN模块进行训练生成建议框,通过样本集训练和微调得到Faster RCNN模型,使用Faster RCNN模块保存的训练参数对待检测芯片图像进行芯片缺陷检测;该样本集是使用公共合成PCB(印刷电路板)数据集训练所得出的模型,改进了特征提取网络,并使用权重自适应器进行加强学习,在一定程度上提高了检测速度和准确率,使得该发明具有更高的灵活性和识别精度,在电子信息产业中具有更好的实用价值和应用前景。

    一种非结构化文本表格识别方法和系统

    公开(公告)号:CN115424282A

    公开(公告)日:2022-12-02

    申请号:CN202211188303.1

    申请日:2022-09-28

    摘要: 本发明提供了一种非结构化文本(包括所有格式的办公文档、文本、图片、各种报表和图像等)表格识别方法,涉及文本识别领域,该方法包括:采集数据集,首先把非结构化文本转化为图像类集合,然后对集合进行图像预处理,把图像集合作为数据集导入模型,对图像数据集的信息进行分析,检测出表格区域,把图像转换成序列,进行表格结构序列预测,检测出表格行结构,进行表格行识别,表格行单元格识别后,识别结果经过后处理,融合表格行结构和单元格文本内容,最终通过文本框和单元格内容进行匹配得到Excel形式的表格识别数据。该方法通过特征学习训练了模型,实现了非结构化文本数据信息的智能提取,有利于非结构化文本数据的进一步分析和实际应用,极大地节省了人力成本提高了工作效率,在一定程度上提高了表格检测速度和准确率,使用本发明所述的方法和系统,可以通过转化进行非结构化文本内容的分析和信息的识别提取,使得非结构化文本在各行各业中具有更好的实用价值和应用。