-
公开(公告)号:CN119128794A
公开(公告)日:2024-12-13
申请号:CN202411152070.9
申请日:2024-08-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/25 , G06F18/214 , G06N3/0442
Abstract: 本发明提出一种基于记忆重放变分自动编码器的IoT数据在线预测系统,系统包括:预测模块,用于将待预测IoT数据输入至训练好的记忆重放VAE,得到预测结果;训练模块,用于训练记忆重放VAE,记忆重放VAE包括编码器和生成器;记忆重放VAE的训练过程为:将第一样本数据输入编码器,得到第一样本潜在因素和第一样本预测结果;生成器基于第一样本潜在因素得到第一样本重放数据;将第二样本数据和第一样本重放数据输入编码器,得到融合样本潜在因素,以及相应预测结果;基于标签和得到的预测结果,计算损失函数,当损失最小时,训练完成。本发明基于OLVAE结合注意力机制和脑重放机制,缓解编码器对旧知识的遗忘,实现IoT数据的高效预测。
-
公开(公告)号:CN118035722A
公开(公告)日:2024-05-14
申请号:CN202410177495.9
申请日:2024-02-08
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/213 , G06F18/10 , G06N3/0895 , G06F123/02
Abstract: 本发明属于船舷风速预测技术领域,提供了一种基于自监督对比学习的船舷风速校正预测方法及系统,包括:获取海洋观测数据;提取所获取的海洋观测数据的数据特征;对所提取的数据特征进行多粒度对比学习,得到海洋观测数据的不同粒度时间序列数据的特征向量;根据所得到的时间序列数据特征向量,完成船舷风速的校正预测。本发明利用超声波风速数据来校正左右船舷风速,通过构建正负样本对,自动从海洋观测时间序列中提取不同粒度的表征向量,而无需手动调整参数或依赖领域专业知识;具备自动学习数据内在结构和模式的能力,提高对左右船舷风速数据误差的感知,增强校正能力。
-