-
公开(公告)号:CN116659829A
公开(公告)日:2023-08-29
申请号:CN202310500680.2
申请日:2023-04-28
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明涉及故障检测技术领域,提供了一种机械设备异常检测方法、系统、存储介质及设备,包括:获取机械设备运行声音;对机械设备运行声音进行变换,得到对数梅尔频谱;基于对数梅尔频谱,采用异常检测模型,进行机械设备异常声音检测;所述异常检测模型训练所采用的训练集,通过对原始训练集进行时移、音量增益、变换、噪声注入和数据增强得到;其中,变换包括,对每个帧进行傅里叶变换得到频域表示,将频域表示映射到梅尔刻度上并分成若干个频带,并对每个频带的能量取对数。增加了数据样本数量和多样性,有助于提高异常检测模型的性能。
-
公开(公告)号:CN117219120A
公开(公告)日:2023-12-12
申请号:CN202311000370.0
申请日:2023-08-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明公开一种基于时频域音频增强的机械设备异常检测方法及系统,包括:获取正常运行音频信号,提取幅度谱和相位谱,对幅度谱进行增强处理,将增强后的幅度谱与相位谱合并得到正常运行音频增强信号;对正常运行音频增强信号提取频谱特征,对卷积自编码器网络进行训练;对待测运行音频信号进行增强处理后得到待测运行音频增强信号,根据待测运行音频增强信号采用训练后的卷积自编码器网络得到待测运行音频重构信号,根据待测运行音频重构信号与待测运行音频增强信号间的重构误差得到异常检测结果。通过对音频信号进行增强,使得采集到的机械设备运行音频更加接近于机械设备本身,更利于异常声音检测而不会发生误判。
-
公开(公告)号:CN116840777A
公开(公告)日:2023-10-03
申请号:CN202310699258.4
申请日:2023-06-13
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于目标跟踪定位领域,提供了一种自适应平方根无迹卡尔曼滤波空间偏差配准方法和系统,初始化待测目标传感器,构建传感器量测方程和目标状态方程;自适应求取协方差矩阵的平方根,计算采样点和权值;利用自适应无迹卡尔曼滤波算法,基于k‑1时刻状态均值和协方差矩阵,估计k时刻的状态、量测与其他滤波中间参数;根据系统当前时刻是否因噪声等干扰造成异常量测数据,自适应校准状态方程中的可调参数;利用自适应无迹卡尔曼滤波算法和自适应聚类算法,根据k‑1时刻的偏差估计值及其误差协方差矩阵与预测的量测数据,构造偏差伪测量方程,对偏差值进行估计和补偿;重复上述步骤,形成闭环循环操作,进行迭代运算,直至完成所有传感器的配准。
-
公开(公告)号:CN117171698A
公开(公告)日:2023-12-05
申请号:CN202310882930.3
申请日:2023-07-18
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明涉及目标追踪领域,提供了一种异步多传感器目标追踪自适应融合方法及系统。该方法包括,构建目标状态方程和传感器测量方程;根据目标状态方程和传感器测量方程,采用无迹卡尔曼滤波算法,计算目标局部最优估计;根据传感器节点搭建动态通信拓扑结构,各个传感器的目标局部最优估计传输到融合中心;融合中心根据各个传感器的目标局部最优估计,进行自适应融合,得到融合估计结果。本发明考虑系统中传感器的采样率、传输率以及通信延迟等情况,讨论目标机动时的多传感器异步测量信息融合问题,设计了一种分层自适应融合结构,实现了传感器测量的分层序贯融合。
-
公开(公告)号:CN116486235A
公开(公告)日:2023-07-25
申请号:CN202310528342.X
申请日:2023-05-11
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/82 , G06V10/774 , G06N3/04 , G06V10/764 , G06N3/094
Abstract: 本发明涉及图像处理技术领域,本发明公开了基于稀疏矩阵和惩罚项的对抗样本生成方法及系统,包括获取图像,将所述图像输入模型,得到对每个类别的分类得分,并利用正确类别的得分,计算稀疏矩阵;利用所述稀疏矩阵设置扰动大小,并利用模型损失函数的梯度信息设置扰动,采用基于梯度的对抗样本生成算法,得到对抗样本。可以减少扰动的L0范数。
-
公开(公告)号:CN116306830A
公开(公告)日:2023-06-23
申请号:CN202310091475.5
申请日:2023-02-03
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明提出基于特征和标签平滑的多步梯度对抗样本生成方法及系统,属于人工智能安全领域。包括:获取被攻击图像;基于Grad‑CAM++算法获得被攻击图像的重要特征区域;以被攻击图像为中心,选取被攻击图像邻域内N张图像,计算邻域内N张图像的损失函数梯度信息;利用正态分布函数对邻域内N张图像的损失函数梯度信息进行加权求和,对被攻击图像的重要特征区域生成扰动;对被攻击图像添加扰动,生成添加扰动后的图像;判定添加扰动后的图像是否攻击成功或达到最大迭代次数,若攻击成功或达到最大迭代次数,则生成对抗样本。本发明对特征区域进行攻击,降低了对抗样本L0范数,对多组梯度信息进行加权求和处理,降低对替代模型的拟合程度,增加黑盒攻击成功率。
-
-
-
-
-