-
公开(公告)号:CN117934914A
公开(公告)日:2024-04-26
申请号:CN202311830648.7
申请日:2023-12-27
IPC分类号: G06V10/764 , G06V10/82 , G06N3/0475 , G06N3/094 , G06N3/084 , G06N3/09 , G06N3/096
摘要: 本发明公开一种基于数据增强和最大绝对差异的对抗样本生成方法及系统,该方法包括:预处理原始图像,得到被攻击图像;创建初始扰动图像,开始迭代;基于被攻击图像,获得并调整多张局部图像,结合扰动图像,对被攻击图像和多张局部图像进行数据增强处理;将数据增强处理后的图像输入至分类网络模型中,计算全局特征与多个局部特征之间的最大绝对差异损失值,并计算分类器损失值,综合得到总损失值,通过反向传播获取损失函数梯度信息;计算得到最终的图像梯度信息,生成并更新扰动图像;判断是否达到最大迭代次数,若是,则对被攻击图像叠加更新后的扰动图像,生成对抗样本;反之则迭代更新扰动图像。本发明能够有效提高生成对抗样本的迁移率。
-
公开(公告)号:CN117877521A
公开(公告)日:2024-04-12
申请号:CN202410021090.6
申请日:2024-01-04
摘要: 本发明提出了基于数据增强的无监督机械声音异常识别方法及系统,通过对采集的正常音频数据提取对数梅尔谱图,并对对数梅尔谱图进行数据增强处理,用于识别模型的训练,增强了识别模型对于复杂故障模式的识别能力,并提高了其对于未知故障类型的泛化能力;在识别模型中通过添加自注意力机制捕捉长距离依赖,能够关注到输入特征图中相距较远的区域间的关系,提高特征提取和特征表达能力。
-