基于依存信息监督的神经网络机器翻译方法及装置

    公开(公告)号:CN110059324A

    公开(公告)日:2019-07-26

    申请号:CN201910348070.9

    申请日:2019-04-26

    Applicant: 广州大学

    Abstract: 本发明公开了一种基于依存信息监督的神经网络机器翻译方法及装置,所述方法包括:获取待翻译的源语句并拆分为语言单位,将每一语言单位转换为输入向量后由编码器编码为隐状态向量;对源语句进行依存分析,并根据分析所得的依存信息以及所述隐状态向量生成每一语言单位的依存信息块;利用基于依存信息块监督的注意力机制计算得到当前时刻的回顾信息;根据当前时刻的回顾信息,结合上一时刻的翻译结果以及当前时刻的解码器端隐状态向量生成当前时刻的翻译结果。本发明通过分析语句的依存信息为注意力机制提供了监督,这样不仅减少了翻译模型的计算量,而且使得翻译模型具有捕获远距离语义信息的能力,从而有效优化了翻译模型的翻译效果。

    基于依存信息监督的神经网络机器翻译方法及装置

    公开(公告)号:CN110059324B

    公开(公告)日:2022-12-13

    申请号:CN201910348070.9

    申请日:2019-04-26

    Applicant: 广州大学

    Abstract: 本发明公开了一种基于依存信息监督的神经网络机器翻译方法及装置,所述方法包括:获取待翻译的源语句并拆分为语言单位,将每一语言单位转换为输入向量后由编码器编码为隐状态向量;对源语句进行依存分析,并根据分析所得的依存信息以及所述隐状态向量生成每一语言单位的依存信息块;利用基于依存信息块监督的注意力机制计算得到当前时刻的回顾信息;根据当前时刻的回顾信息,结合上一时刻的翻译结果以及当前时刻的解码器端隐状态向量生成当前时刻的翻译结果。本发明通过分析语句的依存信息为注意力机制提供了监督,这样不仅减少了翻译模型的计算量,而且使得翻译模型具有捕获远距离语义信息的能力,从而有效优化了翻译模型的翻译效果。

Patent Agency Ranking