-
公开(公告)号:CN114386511A
公开(公告)日:2022-04-22
申请号:CN202210035910.8
申请日:2022-01-11
Applicant: 广州大学
Abstract: 本发明提供基于多维度特征融合和模型集成的恶意软件家族分类方法,包括S1获取恶意软件PE文件,根据获取的PE文件提取多个维度的恶意软件特征;其中恶意软件特征包括:Ember特征、TF‑IDF特征和Asm2Vec;S2根据提取的恶意软件特征进行特征融合和特征选择处理,得到恶意软件家族分类特征集;S3以XGBoost作为基础模型,根据得到的恶意软件家族分类特征集中的特征分别单独训练基础模型,并根据训练好的基础模型对训练集样本进行预测,根据得到预测结果计算各特征在对应各家族上的权重值;并采用加权软投票的方式来计算恶意软件家族分类预测结果。本发明有助于提高恶意软件家族分类的性能和泛化能力。