-
公开(公告)号:CN118563339A
公开(公告)日:2024-08-30
申请号:CN202410280645.9
申请日:2024-03-12
申请人: 惠州市绿色能源与新材料研究院 , 中国科学院过程工程研究所
IPC分类号: C25B1/23 , C25B1/50 , C25B9/19 , C25B11/046
摘要: 本发明涉及一种CO2电还原制宽CO/H2合成气的质子离子液体耦合电解液,属于CO2电化学技术领域。所述新型离子液体耦合电解液由质子离子液体、非质子离子液体和有机溶剂组成,质子离子液体的引入主要提供氢源,同时也有促进CO2电催化还原为CO作用;非质子离子液体主要促进CO2电催化还原为CO,提升还原电流密度;有机溶剂则是降低体系黏度,提升CO2扩散传质效率。通过调节质子‑非质子离子液体组成,可实现CO2电还原制合成气产物的高电流密度和宽碳氢比。该质子‑非质子离子液体耦合电解液具有制备方法简单、电导率高、碳氢比易调、电化学性质稳定等优异性能,在CO2电还原制合成气领域展现出较好的应用前景。
-
-
公开(公告)号:CN115957526A
公开(公告)日:2023-04-14
申请号:CN202111172339.6
申请日:2021-10-08
申请人: 惠州市绿色能源与新材料研究院 , 中国科学院过程工程研究所
摘要: 本发明是一种离子液体中溶质高效脱除净化装置,该装置主要包括闪蒸单元、薄膜蒸发单元、气液分离单元、冷凝单元、真空单元。含溶质的离子液体经由闪蒸单元,实现溶质分子的初脱除。之后离子液体进入薄膜蒸发单元,通过薄膜蒸发的形式实现溶质分子的精脱除。闪蒸单元和气液分离单元均设置除沫器,可有效预防因雾沫夹带造成离子液体的损失问题。解吸溶质分子经闪蒸单元上方出口抽离蒸发系统,抽出的溶质依次通过冷凝器、气液分离单元和真空系统,冷凝收集的溶质可根据需要回收利用。溶质脱除后的离子液体经过泵输送至储液单元供下一步使用。该装置针对离子液体几乎没有蒸气压和粘度较大的特点,利用闪蒸和薄膜蒸发的原理,通过梯级解吸强化了离子液体中溶质的分离效率,可实现离子液体中溶质分子的精脱除。该系统操作方便,运行稳定,效率高,可适用于多种物料和体系,特别适用于离子液体法气体分离回收技术中离子液体吸收剂的解吸再生过程,可广泛应用于化工、石化、制药、冶金等行业。
-
公开(公告)号:CN114044755A
公开(公告)日:2022-02-15
申请号:CN202111245968.7
申请日:2021-10-25
申请人: 惠州市绿色能源与新材料研究院 , 中国科学院过程工程研究所
IPC分类号: C07D233/58 , C07F9/11
摘要: 本发明涉及一种高效离子液体脱色纯化方法,特别是涉及利用添加的溶剂降低离子液体粘度并将离子液体溶到该溶剂中,使固体杂质和有色物质易离心脱除,从而得到脱色纯化离子液体的一种新方法。该方法包括如下步骤:先制备所需的溶剂,再将制备好的溶剂与离子液体以一定的质量比在常压室温进行混合,混合后采用离心分离器进行分离,在一定的转速和时间下,将固体杂质离心分离,离心后的溶液经膜过滤装置进行精过滤,过滤后的溶液输送到蒸发器中,在一定的温度和压力下,将溶剂蒸发分离,可得到脱色纯化后的离子液体产品,蒸发分离得到的溶剂可通过冷凝器收集回收循环利用。本发明的离子液体脱色纯化方法原料价廉易得,且溶剂可回收再利用,有效地降低了综合成本。该工艺简单易控制,离子液体的纯度和收率高,易于工业化应用。该方法可将离子液体中的固体杂质和有色物质高效分离出来,且离子液体结构、物性和性能均保持稳定,实现离子液体的脱色纯化,在能源环境、化学化工和制药领域拥有广阔的应用前景。
-
公开(公告)号:CN117482706A
公开(公告)日:2024-02-02
申请号:CN202311358946.0
申请日:2023-10-19
申请人: 中国石油大学(北京) , 中国科学院过程工程研究所 , 惠州市绿色能源与新材料研究院
IPC分类号: B01D53/14
摘要: 本发明涉及CO2解吸技术领域,公开了固体酸催化离子液体CO2富液解吸的方法。该方法包括:将CO2与离子液体进行接触混合,得到所述离子液体CO2富液,所述离子液体CO2富液为CO2饱和溶液;在固体酸催化剂的存在下,将所述离子液体CO2富液进行CO2解吸处理;所述固体酸催化剂选自MoO3、Nb2O5、Al2O3、WO3、TiO2、Cr2O3、HZSM‑5、TiO(OH)2、MCM‑41、硫酸化氧化锆、硫酸化氧化钛中的至少一种。本发明提供的离子液体CO2富液解吸的方法,能够在维持适宜的解吸效率的同时,降低离子液体CO2富液的解吸温度。
-
公开(公告)号:CN114044755B
公开(公告)日:2023-09-22
申请号:CN202111245968.7
申请日:2021-10-25
申请人: 惠州市绿色能源与新材料研究院 , 中国科学院过程工程研究所
IPC分类号: C07D233/58 , C07F9/11
摘要: 本发明涉及一种高效离子液体脱色纯化方法,特别是涉及利用添加的溶剂降低离子液体粘度并将离子液体溶到该溶剂中,使固体杂质和有色物质易离心脱除,从而得到脱色纯化离子液体的一种新方法。该方法包括如下步骤:先制备所需的溶剂,再将制备好的溶剂与离子液体以一定的质量比在常压室温进行混合,混合后采用离心分离器进行分离,在一定的转速和时间下,将固体杂质离心分离,离心后的溶液经膜过滤装置进行精过滤,过滤后的溶液输送到蒸发器中,在一定的温度和压力下,将溶剂蒸发分离,可得到脱色纯化后的离子液体产品,蒸发分离得到的溶剂可通过冷凝器收集回收循环利用。本发明的离子液体脱色纯化方法原料价廉易得,且溶剂可回收再利用,有效地降低了综合成本。该工艺简单易控制,离子液体的纯度和收率高,易于工业化应用。该方法可将离子液体中的固体杂质和有色物质高效分离出来,且离子液体结构、物性和性能均保持稳定,实现离子液体的脱色纯化,在能源环境、化学化工和制药领域拥有广阔的应用前景。
-
公开(公告)号:CN115999319A
公开(公告)日:2023-04-25
申请号:CN202111226050.8
申请日:2021-10-21
申请人: 中国科学院过程工程研究所 , 惠州市绿色能源与新材料研究院
IPC分类号: B01D53/14
摘要: 本发明涉及一种具有强氢键供体的质子型离子液体高效吸收氨气的方法,属于气体分离与净化技术领域。其特点在于以具有多个氢键位点的质子型离子液体为吸收剂,其中质子型离子液体阳离子上具有两个或多个酸性质子氢和羟基的强氢键供体的基团,通过质子氢和羟基与氨气分子间的多重氢键的耦合作用,实现对氨气高效吸收,采用加热或减压方式可将NH3完全解吸出来,再生后吸收剂可循环使用且吸收性能保持稳定。该方法具有NH3吸收量高、易于解吸、可循环利用等优点,在NH3净化分离方面极具应用前景。
-
公开(公告)号:CN114225643A
公开(公告)日:2022-03-25
申请号:CN202111310986.9
申请日:2021-11-05
申请人: 惠州市绿色能源与新材料研究院 , 中国科学院过程工程研究所
摘要: 本发明涉及一种原位脱除离子液体中铵盐的方法,特别是涉及一种通过添加溶剂,将离子液体内的铵盐阳离子置换成氨气逸出,铵盐阴离子和质子化溶剂结合重新形成离子液体,从而实现原位脱除离子液体中铵盐的方法。该方法主要是将溶剂与含铵盐的离子液体以一定的比例在室温常压下进行混合,混合均匀后通过加热和减压的方式,原位去除离子液体中的铵盐,蒸出的氨气和过量的溶剂可收集回收利用。本发明的离子液体原位脱除铵盐的工艺简单易控制,添加的溶剂是待净化离子液体的一部分,可将铵盐转化成所需的离子液体和氨气,不引入任何杂质,无副反应,铵盐脱除率高,易于工业化应用。该方法不仅可将离子液体中的铵盐高效转化成所需物质,且离子液体结构、物性和性能均保持稳定。该技术在含氨气体分离、催化有机胺合成和含氨废水处理等领域拥有广阔的应用前景。
-
公开(公告)号:CN114540847B
公开(公告)日:2024-06-04
申请号:CN202210136464.X
申请日:2022-02-15
申请人: 中国科学院过程工程研究所 , 惠州市绿色能源与新材料研究院
摘要: 发明提供了一种含腈基和酚羟基离子液体电解液强化CO2电还原制草酸盐的方法,其中离子液体电解液是由季膦或季铵为阳离子,对羟基苯甲腈及其衍生物为阴离子的双功能离子液体,与质子惰性溶剂复配而成的电解液,主要通过芳香环阴离子上腈基和酚羟基与CO2间的双位点协同作用耦合,强化CO2溶解和活化,促进CO2电化学还原生成草酸盐。
-
公开(公告)号:CN116200765A
公开(公告)日:2023-06-02
申请号:CN202211164511.8
申请日:2022-09-23
申请人: 中国科学院过程工程研究所 , 惠州市绿色能源与新材料研究院
IPC分类号: C25B11/032 , C25B1/23 , C25B3/03 , C25B3/07 , C25B3/26
摘要: 本发明涉及一种促进CO2高效电还原的新型电极杆,属于CO2电化学技术领域。所述新型电极杆包括电极集流体部分、气体扩散通道部分和电极杆主体,其中电极集流体部分包括信号接头、内置导电丝、工作电极集流片、三维多孔工作电极;气体扩散通道部分包括气体进口、气体通道;电极杆主体包括上杆体与工作电极压帽,工作电极压帽与上杆体之间通过橡胶垫圈密封,避免CO2气体外泄。本发明首次提出将工作电极、CO2气路和电极杆一体化的思路,采用三维多孔材料作为工作电极和气体扩散层,使得气体须从三维多孔工作电极内部扩散至电解液体系,构建CO2‑电解液‑电极气液固三相反应界面,改变CO2传输路径,提高电极表面CO2浓度,较传统CO2溶解扩散方式显著增强了CO2传质效率,提升还原电流密度,同时克服了传统反应器电解液中CO2溶解度低造成大部分气体未反应、转化效率低等问题,是一种极具应用潜力的反应器核心元件设计。
-
-
-
-
-
-
-
-
-