一种基于软提示的医疗文本分类方法

    公开(公告)号:CN116595170A

    公开(公告)日:2023-08-15

    申请号:CN202310427121.3

    申请日:2023-04-20

    摘要: 本发明公开了一种基于软提示的医疗文本分类方法,包括1)在原始的输入序列中插入可训练的词向量token,固定一些任务相关的锚点token,使用神经网络对其进行随机初始化;2)通过使用四种策略对原有的类别标签词空间进行扩展,将原始输入文本加入软模板后送入预训练语言模型中,利用预训练语言模型的知识库计算每个单词被填入的概率;3)将单词的概率映射到特定的类别标签,得出分类的结果;4)通过损失函数计算真实标签和预测结果之间的误差,不断更新连续模板以及模型参数。本发明不仅大大减少了对人工资源以及对大规模训练样本的依赖,也在一定程度上降低了模型训练的成本,具有较高的鲁棒性和实用性。

    一种基于多任务学习的超声图像多分类方法

    公开(公告)号:CN113689421A

    公开(公告)日:2021-11-23

    申请号:CN202111042625.0

    申请日:2021-09-07

    IPC分类号: G06T7/00 G06K9/62

    摘要: 本发明公开了一种基于多任务学习的超声图像多分类方法,包括步骤:1)设计和实现贝叶斯多项式回归算法,并将同时包括有标签和无标签的超声图像数据集作为输入,学习得到所有任务共有的模型参数;2)构建叠加重构独立成分分析模型对输入的图像特征表示做训练;3)构建半监督多任务学习框架,对多任务的图像特征表示进行进一步优化;4)用逻辑回归模型在有标签的超声图像数据集上训练分类器,并在无标签的超声图像数据集上得到分类结果。本发明结合深度学习和多任务学习的特点,将所有数据集进行组合以提高泛化性能,并利用超声图像数据集中已有的部分有标签数据,提升了超声图像数据集的分类准确度,具有较高的实用性。