一种深层肿瘤新生血管的高分辨率光声成像方法

    公开(公告)号:CN110796603B

    公开(公告)日:2023-05-23

    申请号:CN201911165348.5

    申请日:2019-11-25

    IPC分类号: G06T3/40 G06T7/30 G06T11/00

    摘要: 本发明公开了一种深度学习模型下深层肿瘤新生血管的高分辨率光声成像方法,属于生物医学成像领域,具体步骤为:采集训练数据,在声学分辨率光声成像系统下,采集肿瘤血管的低分辨率光声图像,在光学分辨率光声显微成像系统下,采集肿瘤血管的高分辨率光声图像;基于训练数据,训练深度学习模型,深度学习模型为生成对抗深度学习网络模型;基于训练后的深度学习模型,实现声学分辨率光声成像系统下深层肿瘤新生血管的高分辨率成像。本发明实现了声学分辨率光声成像系统下的光学分辨率的光声图像重建,能够对深层肿瘤新生血管进行光学分辨率成像,清晰获取整个肿瘤区域的新生血管网络,从而为后续的各种肿瘤血管量化分析提供高质量的血管数据。

    一种基于极限学习机的慢盘检测方法及系统

    公开(公告)号:CN106897178B

    公开(公告)日:2020-06-23

    申请号:CN201710094392.6

    申请日:2017-02-21

    IPC分类号: G06F11/22

    摘要: 本发明提供了一种基于极限学习机的慢盘检测方法及系统,通过对历史磁盘数据进行特征提取,从中选择特征向量进行训练,实现了基于神经网络检测慢盘的方案,优化了慢盘检测过程,提高了慢盘检测准确性并降低了计算复杂度;同时在实际使用过程中,随着历史磁盘数据数量的增加,越来越多的样本被不断训练,模型精度越来越高,进一步提升了准确率,保证了数据存储系统始终处于最佳工作状态。

    一种深层肿瘤新生血管的高分辨率光声成像方法

    公开(公告)号:CN110796603A

    公开(公告)日:2020-02-14

    申请号:CN201911165348.5

    申请日:2019-11-25

    IPC分类号: G06T3/40 G06T7/30 G06T11/00

    摘要: 本发明公开了一种深度学习模型下深层肿瘤新生血管的高分辨率光声成像方法,属于生物医学成像领域,具体步骤为:采集训练数据,在声学分辨率光声成像系统下,采集肿瘤血管的低分辨率光声图像,在光学分辨率光声显微成像系统下,采集肿瘤血管的高分辨率光声图像;基于训练数据,训练深度学习模型,深度学习模型为生成对抗深度学习网络模型;基于训练后的深度学习模型,实现声学分辨率光声成像系统下深层肿瘤新生血管的高分辨率成像。本发明实现了声学分辨率光声成像系统下的光学分辨率的光声图像重建,能够对深层肿瘤新生血管进行光学分辨率成像,清晰获取整个肿瘤区域的新生血管网络,从而为后续的各种肿瘤血管量化分析提供高质量的血管数据。

    一种基于极限学习机的慢盘检测方法及系统

    公开(公告)号:CN106897178A

    公开(公告)日:2017-06-27

    申请号:CN201710094392.6

    申请日:2017-02-21

    IPC分类号: G06F11/22

    摘要: 本发明提供了一种基于极限学习机的慢盘检测方法及系统,通过对历史磁盘数据进行特征提取,从中选择特征向量进行训练,实现了基于神经网络检测慢盘的方案,优化了慢盘检测过程,提高了慢盘检测准确性并降低了计算复杂度;同时在实际使用过程中,随着历史磁盘数据数量的增加,越来越多的样本被不断训练,模型精度越来越高,进一步提升了准确率,保证了数据存储系统始终处于最佳工作状态。