基于深度学习的边框回归的端到端弱监督目标检测方法

    公开(公告)号:CN110533067A

    公开(公告)日:2019-12-03

    申请号:CN201910660518.0

    申请日:2019-07-22

    摘要: 本发明公开了一种基于深度学习的边框回归的端到端弱监督目标检测方法。本发明在弱监督卷积神经网络中,经过卷积层,选择性搜索的边框经过特征图进行金字塔池化层和两个全连接层后输出预测边框的特征向量,后面再接一个全连接层和类别上的softmax层;最后输出选择性搜索框中的对应每个物体类的预测分数;选择每个类的得分最高的框最为这个类的伪标注边框;利用每个类别的检测出的最高分数的边框作为伪标注边框对弱监督模型预测出的物体框进行回归,从而产生回归损失函数,回归损失函数和弱监督模型的分类以及定位损失函数共同组成新的损失函数监督弱监督检测模型。本发明减少了检测时间,提高了目标检测的效率。