-
公开(公告)号:CN114863255A
公开(公告)日:2022-08-05
申请号:CN202210469572.9
申请日:2022-04-28
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于深度学习的垃圾种类检测与识别方法及装置,首先获取垃圾图像并进行人工标注得到标签文件,然后选择YOLOv5作为基础网络,在特征提取网络BackBone中加入超轻量级注意力模块,识别到在背景信息干扰下的垃圾通道信息,在特征融合网络Neck中利用PyConv替换传统卷积,捕捉特征图中不同层次的特征并进行融合,同时引入组卷积,降低网络参数量。其次,融合多个预测框的空间尺度信息并引入非线性信息,提升预测框的回归准确率。最后,对网络模型进行剪枝,以满足嵌入式设备的要求,将垃圾图像输入预测模型,输出检测结果。本发明在垃圾检测过程中有较高的准确性和实时性,对垃圾分类与检测的研究有较大的帮助。