-
公开(公告)号:CN115486858A
公开(公告)日:2022-12-20
申请号:CN202211162255.9
申请日:2022-09-23
申请人: 杭州电子科技大学
摘要: 本发明公开了一种多分类器融合的自适应脑区脑电伪迹检测方法。本发明步骤:1、对多通道的脑电EEG信号进行滤波和多类伪迹类别划分;2、针对得到的每类伪迹信号对应的脑部区域分析和通道关联性分析,得到每类伪迹的区域信息和通道信息;3、对每类伪迹的通道信息进行特征提取;4、针对区域信息和提取的特征,使用ReliefF算法和mRMR算法进行两阶段的特征选择,建立特征分组;5、使用机器学习算法结合选取的特征进行分类模型的训练;6、针对步骤5所训练得到的多个分类器进行系统搭建。本发明克服了临床上人工定位伪迹的繁琐,提高了异常信号的快速定位,解决了现有伪迹识别技术的单调性,同时可以实现对多通道脑电EEG数据进行实时的伪迹检测。