一种基于深度学习的作物根层土壤含水量模拟方法

    公开(公告)号:CN117556695B

    公开(公告)日:2024-05-14

    申请号:CN202311503095.4

    申请日:2023-11-11

    Abstract: 本发明公开了一种基于深度学习的作物根层土壤含水量模拟方法,包括收集研究区的影响因子;将各影响因子和根层土壤含水量进行时间和空间上的相关性分析,计算各影响因子对根层土壤含水量模拟的重要度,确定模型最终的输入因子;构建区域根层土壤含水量模型;将ERA5原始数据集浅层土壤含水量数据和对应的气候、下垫面影响因子资料输入到区域根层土壤含水量模型中逐栅格进行模拟,模拟获得研究区ERA5根层土壤含水量数据集。本发明针对站点实测根层土壤含水量数据非实时不连续且成本高、遥感反演产品精度较低的不足,将高精度的站点数据和ERA5实时连续的反演数据的优势相结合模拟根层土壤含水量,获取精度较高且实时连续的区域根层土壤含水量信息。

    一种基于深度学习的作物根层土壤含水量模拟方法

    公开(公告)号:CN117556695A

    公开(公告)日:2024-02-13

    申请号:CN202311503095.4

    申请日:2023-11-11

    Abstract: 本发明公开了一种基于深度学习的作物根层土壤含水量模拟方法,包括收集研究区的影响因子;将各影响因子和根层土壤含水量进行时间和空间上的相关性分析,计算各影响因子对根层土壤含水量模拟的重要度,确定模型最终的输入因子;构建区域根层土壤含水量模型;将ERA5原始数据集浅层土壤含水量数据和对应的气候、下垫面影响因子资料输入到区域根层土壤含水量模型中逐栅格进行模拟,模拟获得研究区ERA5根层土壤含水量数据集。本发明针对站点实测根层土壤含水量数据非实时不连续且成本高、遥感反演产品精度较低的不足,将高精度的站点数据和ERA5实时连续的反演数据的优势相结合模拟根层土壤含水量,获取精度较高且实时连续的区域根层土壤含水量信息。

Patent Agency Ranking