一种基于卷积神经网络的电厂电表字符定位和识别方法

    公开(公告)号:CN110263790A

    公开(公告)日:2019-09-20

    申请号:CN201910316734.3

    申请日:2019-04-18

    Applicant: 汕头大学

    Abstract: 本发明实施例公开了一种基于卷积神经网络的电厂电表字符定位和识别方法,包括:整理电厂电表图像,建立由所述图像组成的含有字符的电表图像库;训练用于定位字符区域的卷积神经网络,确定网络中的学习参数;利用训练好的用于定位字符区域的卷积神经网络定位所述图像库中电表图像的字符区域,输出字符区域进行裁剪并导出;整理导出的含有数字序列图片并建立对应的图像库,利用其训练用于识别数字序列的卷积神经网络;利用训练好的卷积神经网络识别裁剪得到的数字序列图像,输出字符识别结果。本发明充分利用卷积神经网络的特征提取和学习能力,规避了传统图像处理中的噪声等问题,提高了系统的鲁棒性,高效准确地定位并识别电厂电表中的字符。

Patent Agency Ranking